
Programming Language Concepts: Lecture 12

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 12, 04 March 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


Concurrent Programming

Monitors [Per Brinch Hansen, CAR Hoare]

◮ Attach synchronization control to the data that is being
protected

◮ Monitor is like a class in an OO language

◮ Data definition — to which access is restricted across threads

◮ Collections of functions operating on this data — all are
implicitly mutually exclusive

◮ Monitor guarantees mutual exclusion — if one function is
active, any other function will have to wait for it to finish



Monitors

monitor bank_account{

double accounts[100];

boolean transfer (double amount, int source, int target){

// transfer amount accounts[source] -> accounts[target]

if (accounts[source] < amount){ return false; }

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute the total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }

return balance;

}

}



Monitors . . .

transfer(500.00,i,j);

transfer(400.00,j,k);

◮ Mechanism for a thread to suspend itself and give up the
monitor

◮ A suspended process is waiting for monitor to change its state

◮ Separate internal queue, as opposed to external queue where
initially blocked threads wait

◮ Dual operation to wake up suspended processes



Monitors . . .

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

◮ Signal and exit — notifying process immediately exits the
monitor

◮ Signal and wait — notifying process swaps roles and goes into
the internal queue of the monitor

◮ Signal and continue — notifying process keeps control till it
completes and then one of the notified processes steps in



Monitors . . .

◮ Makes sense to have more than one internal queue

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue for each account

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue associated with target

return true;

}

}



Monitors in Java

◮ Java implements monitors with a single internal queue

◮ Monitors incorporated within existing class definitions



Monitors in Java

◮ Java implements monitors with a single internal queue

◮ Monitors incorporated within existing class definitions

◮ Function declared synchronized is to be executed atomically

◮ Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue



Monitors in Java

◮ Java implements monitors with a single internal queue

◮ Monitors incorporated within existing class definitions

◮ Function declared synchronized is to be executed atomically

◮ Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue

◮ Each object has a lock

◮ To execute a synchronized method, thread must acquire lock

◮ Thread gives up lock when the method exits

◮ Only one thread can have the lock at any time



Monitors in Java

◮ Java implements monitors with a single internal queue

◮ Monitors incorporated within existing class definitions

◮ Function declared synchronized is to be executed atomically

◮ Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue

◮ Each object has a lock

◮ To execute a synchronized method, thread must acquire lock

◮ Thread gives up lock when the method exits

◮ Only one thread can have the lock at any time

◮ wait() and notify() to suspend and resume

◮ notify() signals one (arbitrary) waiting process

◮ notifyAll() signals all waiting processes

◮ Java uses signal and continue



Monitors in Java . . .

public class bank_account{

double accounts[100];

public synchronized boolean

transfer (double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount; accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }

return balance;

}

public double current_balance(int i){ // not synchronized!

return accounts[i];

}

}



Object locks

◮ Every object has a lock in Java



Object locks

◮ Every object has a lock in Java

◮ Can synchronize arbitrary blocks of code

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}



Object locks

◮ Every object has a lock in Java

◮ Can synchronize arbitrary blocks of code

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

◮ f() and g() can start in parallel

◮ Only one of the threads can grab the lock for o



Object locks . . .

◮ Each object has its own internal queue

Object o = new Object();

public int f(){

..

synchronized(o){

...

o.wait(); // Wait in queue attached to "o"

...

}

}

public double g(){

..

synchronized(o){

...

o.notifyAll(); // Wake up queue attached to "o"

...

}

}



Object locks . . .

◮ Can convert methods from “externally” synchronized to
“internally” synchronized

public double h(){

synchronized(this){

...

}

}



Object locks . . .

◮ Can convert methods from “externally” synchronized to
“internally” synchronized

public double h(){

synchronized(this){

...

}

}

◮ “Anonymous” wait(), notify(), notifyAll() abbreviate
this.wait(), this.notify(), this.notifyAll()



Object locks . . .

◮ Actually, wait() can be “interrupted” by an
InterruptedException

◮ Should write

try{

wait();

}

catch (InterruptedException e) { ... };



Object locks . . .

◮ Actually, wait() can be “interrupted” by an
InterruptedException

◮ Should write

try{

wait();

}

catch (InterruptedException e) { ... };

◮ Error to use wait(), notify(), notifyAll() outside
synchronized method

◮ IllegalMonitorStateException



Object locks . . .

◮ Actually, wait() can be “interrupted” by an
InterruptedException

◮ Should write

try{

wait();

}

catch (InterruptedException e) { ... };

◮ Error to use wait(), notify(), notifyAll() outside
synchronized method

◮ IllegalMonitorStateException

◮ Likewise, use o.wait(), o.notify(), o.notifyAll() only
in block synchronized on o



Java threads

◮ Have a class extend Thread

◮ Define a function run() where execution can begin in parallel

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Go to sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start off p[i].run() in concurrent thread

}

}



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start off p[i].run() in concurrent thread

}

}

◮ p[i].start() initiates p[i].run() in a separate thread



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start off p[i].run() in concurrent thread

}

}

◮ p[i].start() initiates p[i].run() in a separate thread

◮ Directly calling p[i].run() does not execute in separate
thread!



Java threads . . .

◮ sleep(...) is a static function in Thread

◮ Argument is time to sleep, in milliseconds

◮ Use Thread.sleep(...) if current class does not extend
Thread

◮ sleep(..) throws InterruptedException (like wait())



Java threads . . .

◮ Cannot always extend Thread

◮ Single inheritance



Java threads . . .

◮ Cannot always extend Thread

◮ Single inheritance

◮ Instead, implement Runnable

public class Parallel implements Runnable{ // only this line

// has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}



Java threads . . .

◮ To use Runnable class, must explicitly create a Thread and
start() it

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]); // Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run() concurrently

// Note: t[i].start(), not p[i].start()

}

}

}



Life cycle of a Java thread

A thread can be in four states

◮ New: Created but not start()ed.

◮ Runnable: start()ed and ready to be scheduled.

◮ Need not be actually “running”
◮ No guarantee made about how scheduling is done
◮ Most Java implementations use time-slicing

◮ Blocked: not available to run

◮ Within sleep(..) — unblocked when sleep timer expires
◮ Suspended by wait() — unblocked by notify() or

notfifyAll().
◮ Blocked on input/output — unblocked when the i/o succeeds.

◮ Dead: thread terminates.



Interrupts

◮ One thread can interrupt another using interrupt()

◮ p[i].interrupt(); interrupts thread p[i]



Interrupts

◮ One thread can interrupt another using interrupt()

◮ p[i].interrupt(); interrupts thread p[i]

◮ Raises InterruptedException within wait(), sleep()



Interrupts

◮ One thread can interrupt another using interrupt()

◮ p[i].interrupt(); interrupts thread p[i]

◮ Raises InterruptedException within wait(), sleep()
◮ No exception raised if thread is running!



Interrupts

◮ One thread can interrupt another using interrupt()

◮ p[i].interrupt(); interrupts thread p[i]

◮ Raises InterruptedException within wait(), sleep()
◮ No exception raised if thread is running!

◮ interrupt() sets a status flag
◮ interrupted() checks interrupt status and clears the flag



Interrupts

◮ One thread can interrupt another using interrupt()

◮ p[i].interrupt(); interrupts thread p[i]

◮ Raises InterruptedException within wait(), sleep()
◮ No exception raised if thread is running!

◮ interrupt() sets a status flag
◮ interrupted() checks interrupt status and clears the flag

◮ Detecting an interrupt while running or waiting

public void run(){

try{

j = 0;

while(!interrupted() && j < 100){

System.out.println("My id is "+id);

sleep(1000); // Go to sleep for 1000 ms

j++;

}

}

catch(InterruptedException e){}

}



Interrupts

◮ Check another thread’s interrupt status using interrupted

◮ t.isInterrupted() to check status of t’s interrupt flag

◮ Does not clear flag



Interrupts

◮ Check another thread’s interrupt status using interrupted

◮ t.isInterrupted() to check status of t’s interrupt flag

◮ Does not clear flag

◮ isAlive() checks running status of a thread

◮ t.isAlive() is true if t is Runnable or Blocked

◮ t.isAlive() is false if t is New or Dead



Interrupts

◮ Check another thread’s interrupt status using interrupted

◮ t.isInterrupted() to check status of t’s interrupt flag

◮ Does not clear flag

◮ isAlive() checks running status of a thread

◮ t.isAlive() is true if t is Runnable or Blocked

◮ t.isAlive() is false if t is New or Dead

◮ Can also stop(), suspend() and resume() a thread, but
should not!



An example

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.



An example

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty



An example

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

◮ Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.



An example

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

◮ Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.

◮ When bridge becomes empty and cars are waiting, yet another
car can enter in the opposite direction and makes them all
wait some more.



An example . . .

◮ Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

◮ Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)



An example . . .

◮ Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

◮ Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)

◮ Bridge has a public method

public void cross(int id, boolean d, int s)

◮ id is identity of car

◮ d indicates direction

◮ true is North

◮ false is South

◮ s indicates time taken to cross (milliseconds)



An example . . .

public void cross(int id, boolean d, int s)

◮ Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST

2009

2. The direction changes
Car 5 switches bridge direction to North at Thu

Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13

23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003



An example . . .

public void cross(int id, boolean d, int s)

◮ Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST

2009

2. The direction changes
Car 5 switches bridge direction to North at Thu

Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13

23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003

◮ Use java.util.Date to generate time stamps


