
Programming Language Concepts: Lecture 9

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 9, 16 February 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Event driven programming

◮ GUI components such as buttons, checkboxes generate high
level events

Event driven programming

◮ GUI components such as buttons, checkboxes generate high
level events

◮ Each event is automatically sent to a listener

◮ Listener capability is described using an interface

◮ Event is sent as an object — listener can query the event to
obtain details such as event source

Event driven programming

◮ GUI components such as buttons, checkboxes generate high
level events

◮ Each event is automatically sent to a listener

◮ Listener capability is described using an interface

◮ Event is sent as an object — listener can query the event to
obtain details such as event source

◮ In Java, association between event generators and listeners is
flexible

◮ One listener can listen to multiple objects

◮ One component can inform multiple listeners

Event driven programming

◮ GUI components such as buttons, checkboxes generate high
level events

◮ Each event is automatically sent to a listener

◮ Listener capability is described using an interface

◮ Event is sent as an object — listener can query the event to
obtain details such as event source

◮ In Java, association between event generators and listeners is
flexible

◮ One listener can listen to multiple objects

◮ One component can inform multiple listeners

◮ Must explicitly set up association between component and
listener

◮ Events are “lost” if nobody is listening!

Swing example: A checkbox

◮ JCheckbox: a box that can be ticked

Swing example: A checkbox

◮ JCheckbox: a box that can be ticked

◮ A panel with two checkboxes, Red and Blue

◮ If only Red is ticked, make background red
◮ If only Blue is ticked, make background blue
◮ If both are ticked, make background green

Swing example: A checkbox

◮ JCheckbox: a box that can be ticked

◮ A panel with two checkboxes, Red and Blue

◮ If only Red is ticked, make background red
◮ If only Blue is ticked, make background blue
◮ If both are ticked, make background green

◮ Only one action — click the box

◮ Listener is again ActionListener

Swing example: A checkbox

◮ JCheckbox: a box that can be ticked

◮ A panel with two checkboxes, Red and Blue

◮ If only Red is ticked, make background red
◮ If only Blue is ticked, make background blue
◮ If both are ticked, make background green

◮ Only one action — click the box

◮ Listener is again ActionListener

◮ Checkbox has a state: ticked or not ticked

◮ Method isSelected() to determine the current state of the
checkbox

Swing example: A checkbox

◮ JCheckbox: a box that can be ticked

◮ A panel with two checkboxes, Red and Blue

◮ If only Red is ticked, make background red
◮ If only Blue is ticked, make background blue
◮ If both are ticked, make background green

◮ Only one action — click the box

◮ Listener is again ActionListener

◮ Checkbox has a state: ticked or not ticked

◮ Method isSelected() to determine the current state of the
checkbox

◮ Rest is very similar to basic button example

CheckBoxPanel

import ...

public class CheckBoxPanel extends JPanel implements ActionListener{

private JCheckBox redBox;

private JCheckBox blueBox;

public CheckBoxPanel(){

redBox = new JCheckBox("Red");

blueBox = new JCheckBox("Blue");

redBox.addActionListener(this);

blueBox.addActionListener(this);

redBox.setSelected(false);

blueBox.setSelected(false);

add(redBox);

add(blueBox);

}

...

}

CheckBoxPanel . . .

public class CheckBoxPanel extends JPanel implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

Color color = getBackground();

if (blueBox.isSelected()) color = Color.blue;

if (redBox.isSelected()) color = Color.red;

if (blueBox.isSelected() && redBox.isSelected()) color = Color.green;

setBackground(color);

repaint();

}

}

A JFrame for our CheckBoxPanel . . .

public class CheckBoxFrame extends JFrame implements WindowListener{

private Container contentPane;

public CheckBoxFrame(){

setTitle("ButtonTest"); setSize(300, 200);

addWindowListener(this);

contentPane = this.getContentPane();

contentPane.add(new CheckBoxPanel());

}

public void windowClosing(WindowEvent e){ // Exit when window

System.exit(0); // is killed

}

public void windowActivated(WindowEvent e){}

... // 5 more dummy methods

}

Swing example: Multicasting

◮ Two panels, each with three buttons, Red, Blue, Yellow

◮ Clicking a button in either panel changes background colour
in both panels

Swing example: Multicasting

◮ Two panels, each with three buttons, Red, Blue, Yellow

◮ Clicking a button in either panel changes background colour
in both panels

◮ Both panels must listen to all six buttons

Swing example: Multicasting

◮ Two panels, each with three buttons, Red, Blue, Yellow

◮ Clicking a button in either panel changes background colour
in both panels

◮ Both panels must listen to all six buttons

◮ However, each panel has references only for its local buttons
◮ How do we determine the source of an event from a remote

button?

Swing example: Multicasting

◮ Two panels, each with three buttons, Red, Blue, Yellow

◮ Clicking a button in either panel changes background colour
in both panels

◮ Both panels must listen to all six buttons

◮ However, each panel has references only for its local buttons
◮ How do we determine the source of an event from a remote

button?

◮ Associate an ActionCommand with a button

◮ Assign the same action command to both Red buttons, . . .

◮ Choose colour according to ActionCommand

Swing example: Multicasting

◮ Two panels, each with three buttons, Red, Blue, Yellow

◮ Clicking a button in either panel changes background colour
in both panels

◮ Both panels must listen to all six buttons

◮ However, each panel has references only for its local buttons
◮ How do we determine the source of an event from a remote

button?

◮ Associate an ActionCommand with a button

◮ Assign the same action command to both Red buttons, . . .

◮ Choose colour according to ActionCommand

◮ Need to add both panels as listeners for each button

◮ Add a public function to add a new listener to all buttons in a
panel

Multicast ButtonPanel

import ...

public class ButtonPanel extends JPanel implements ActionListener{

private JButton yellowButton;

private JButton blueButton;

private JButton redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

yellowButton.setActionCommand("YELLOW");

blueButton.setActionCommand("BLUE");

redButton.setActionCommand("RED");

add(yellowButton);

add(blueButton);

add(redButton);

}

...

Multicast ButtonPanel

public class ButtonPanel extends JPanel implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

Color color = getBackground();

String cmd = evt.getActionCommand(); // Use ActionCommand to

// determine what to do

if (cmd.equals("YELLOW")) color = Color.yellow;

else if (cmd.equals("BLUE")) color = Color.blue;

else if (cmd.equals("RED")) color = Color.red;

setBackground(color);

repaint();

}

...

}

Multicast ButtonPanel

public class ButtonPanel extends JPanel implements ActionListener{

...

public void addListener(ActionListener o){

yellowButton.addActionListener(o); // Add a commmon listener

blueButton.addActionListener(o); // for all buttons in

redButton.addActionListener(o); // this panel

}

}

The JFrame for the multicast example

public class ButtonFrame extends JFrame implements WindowListener{

private Container contentPane;

private ButtonPanel b1, b2;

public ButtonFrame(){

...

b1 = new ButtonPanel(); // Create two button panels

b2 = new ButtonPanel();

b1.addListener(b1); // Make each panel listen

b1.addListener(b2); // to both sets of buttons

b2.addListener(b1);

b2.addListener(b2);

contentPane = this.getContentPane();

contentPane.setLayout(new BorderLayout()); // Set layout to

contentPane.add(b1,"North"); // ensure that

contentPane.add(b2,"South"); // panels don’t

// overlap

} ...

}

The event queue

◮ OS passes on low-level events to run-time support for
event-driven components

◮ Run-time support generates high level events from low level
events

The event queue

◮ OS passes on low-level events to run-time support for
event-driven components

◮ Run-time support generates high level events from low level
events

◮ Events are stored in an event queue

◮ Can optimize — e.g., combine consecutive mouse movements

◮ All events, low and high level, go into the queue

The event queue

◮ OS passes on low-level events to run-time support for
event-driven components

◮ Run-time support generates high level events from low level
events

◮ Events are stored in an event queue

◮ Can optimize — e.g., combine consecutive mouse movements

◮ All events, low and high level, go into the queue

◮ Application may have a need to capture low level events as
well

◮ May want to “capture” the mouse in an application
◮ In a line drawing program, after selecting the first point, must

select the target point
◮ All other mouse events are captured and “consumed”

The event queue

◮ OS passes on low-level events to run-time support for
event-driven components

◮ Run-time support generates high level events from low level
events

◮ Events are stored in an event queue

◮ Can optimize — e.g., combine consecutive mouse movements

◮ All events, low and high level, go into the queue

◮ Application may have a need to capture low level events as
well

◮ May want to “capture” the mouse in an application
◮ In a line drawing program, after selecting the first point, must

select the target point
◮ All other mouse events are captured and “consumed”

◮ Low level events have listener interfaces, like high level events

Manipulating the event queue

◮ Normally, a Java Swing program interacts with the queue
implicitly

◮ Identify and associate listeners to events
◮ When an event reaches the head of the event queue, it is

despatched to all listed listeners
◮ If there are no listeners, the event is discarded

◮ Can also explicitly manipulate event queue in Java

Manipulating the event queue

◮ Normally, a Java Swing program interacts with the queue
implicitly

◮ Identify and associate listeners to events
◮ When an event reaches the head of the event queue, it is

despatched to all listed listeners
◮ If there are no listeners, the event is discarded

◮ Can also explicitly manipulate event queue in Java

◮ Accessing the queue

EventQueue evtq =

Toolkit.getDefaultToolkit().getSystemEventQueue();

Manipulating the event queue

◮ Normally, a Java Swing program interacts with the queue
implicitly

◮ Identify and associate listeners to events
◮ When an event reaches the head of the event queue, it is

despatched to all listed listeners
◮ If there are no listeners, the event is discarded

◮ Can also explicitly manipulate event queue in Java

◮ Accessing the queue

EventQueue evtq =

Toolkit.getDefaultToolkit().getSystemEventQueue();

◮ Consuming an event from the queue

AWTEvent evt = eq.getNextEvent();

Manipulating the event queue

◮ Normally, a Java Swing program interacts with the queue
implicitly

◮ Identify and associate listeners to events
◮ When an event reaches the head of the event queue, it is

despatched to all listed listeners
◮ If there are no listeners, the event is discarded

◮ Can also explicitly manipulate event queue in Java

◮ Accessing the queue

EventQueue evtq =

Toolkit.getDefaultToolkit().getSystemEventQueue();

◮ Consuming an event from the queue

AWTEvent evt = eq.getNextEvent();

◮ Adding an event to the queue

evtq.postEvent(new ActionEvent(.....));

Adding customized events

◮ Recall the timer example

◮ Suppose we want Timer to generate an event when its
countdown expires

Adding customized events

◮ Recall the timer example

◮ Suppose we want Timer to generate an event when its
countdown expires

◮ Java events extend class AWTEvent

◮ Each event is identified by a unique numeric id

Adding customized events

◮ Recall the timer example

◮ Suppose we want Timer to generate an event when its
countdown expires

◮ Java events extend class AWTEvent

◮ Each event is identified by a unique numeric id

class TimerEvent extends AWTEvent{

public static final int

TIMER_EVENT = AWTEvent.RESERVED_ID_MAX + 5555;

public TimerEvent(Timer t) {

super(t, TIMER_EVENT);

}

}

◮ Constructor sets source of event and its type (numeric id)

Adding customized events . . .

◮ An interface defining a listener for TimerEvents

interface TimerListener extends EventListener{

public void timeElapsed(TimerEvent evt);

}

Adding customized events . . .

◮ An interface defining a listener for TimerEvents

interface TimerListener extends EventListener{

public void timeElapsed(TimerEvent evt);

}

◮ . . . and a class implementing the interface

class MyClass implements TimerListener{

...

public void timeElapsed(TimerEvent evt){

...

}

}

Adding customized events . . .

◮ Generate TimerEvents by manipulating event queue

class Timer extends Component implements Runnable{

// Runnable is to ensure that Timer can run concurrently

...

private static EventQueue evtq =

Toolkit.getDefaultToolkit().getSystemEventQueue();

// There is only one copy of the EventQueue, shared by all Timers

public Timer(){

...

}

public void f(){

...

// Generate a TimerEvent when done

TimerEvent te = new TimerEvent(this);

evtq.postEvent(te);

}

}

Adding customized events . . .

◮ Each Timer must keep track of its listeners

◮ Recall addListener for JButton . . .

class Timer extends Component implements Runnable{

...

private TimerListener listener;

public addListener(TimerListener t){

listener = t;

}

...

}

Adding customized events . . .

◮ Typical code that uses the timer

...

Timer t = new Timer();

MyClass m = new MyClass(..);

t.addListener(m);

t.start();

...

◮ After t.start() completes, how does it know what to do to
notify m?

Adding customized events . . .

◮ It does not know! We have to tell it what to do

Adding customized events . . .

◮ It does not know! We have to tell it what to do

◮ AWT promises that a fixed function processEvent will be
called within an object whenever it generates an AWTEvent

Adding customized events . . .

◮ It does not know! We have to tell it what to do

◮ AWT promises that a fixed function processEvent will be
called within an object whenever it generates an AWTEvent

◮ Add the following to Timer

class Timer extends Component implements Runnable{

...

public void processEvent(AWTEvent evt)

{ if (evt instanceof TimerEvent)

{ if (listener != null)

listener.timeElapsed((TimerEvent)evt);

}

else super.processEvent(evt);

}

...

}

Adding customized events . . .

Putting it all together

◮ When a Timer t generates a TimerEvent, AWT calls the
(fixed) method processEvent within t

◮ In Timer, we write explicit in processEvent to call any
listener associated with t

◮ To support multicasting, allow Timer to store an array of
listeners and notify each in turn.

