
Programming Language Concepts: Lecture 8

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 8, 11 February 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


GUIs and event driven programming

◮ How do we design graphical user interfaces?



GUIs and event driven programming

◮ How do we design graphical user interfaces?

◮ Multiple applications simultaneously displayed on screen



GUIs and event driven programming

◮ How do we design graphical user interfaces?

◮ Multiple applications simultaneously displayed on screen

◮ Keystrokes, mouse clicks have to be sent to appropriate
window



GUIs and event driven programming

◮ How do we design graphical user interfaces?

◮ Multiple applications simultaneously displayed on screen

◮ Keystrokes, mouse clicks have to be sent to appropriate
window

◮ In parallel to main activity, record and respond to these
events

◮ Web browser renders current page
◮ Clicking on a link loads a different page



Keeping track of events

Low level solution

◮ Remember coordinates and extent of each window



Keeping track of events

Low level solution

◮ Remember coordinates and extent of each window

◮ Track coordinates of mouse



Keeping track of events

Low level solution

◮ Remember coordinates and extent of each window

◮ Track coordinates of mouse

◮ OS reports mouse click at (x , y)

◮ Check which windows are positioned at (x , y)
◮ Check if one of them is “active”
◮ Inform that window about mouse click



Keeping track of events

Low level solution

◮ Remember coordinates and extent of each window

◮ Track coordinates of mouse

◮ OS reports mouse click at (x , y)

◮ Check which windows are positioned at (x , y)
◮ Check if one of them is “active”
◮ Inform that window about mouse click

◮ Tedious and error-prone



Keeping track of events . . .

Better solution

◮ Programming language support for higher level events

◮ Button was clicked, box was ticked . . .



Keeping track of events . . .

Better solution

◮ Programming language support for higher level events

◮ Button was clicked, box was ticked . . .

◮ OS reports low level events

◮ Mouse clicked at (x , y), key ’a’ pressed



Keeping track of events . . .

Better solution

◮ Programming language support for higher level events

◮ Button was clicked, box was ticked . . .

◮ OS reports low level events

◮ Mouse clicked at (x , y), key ’a’ pressed

◮ Run time support for language maps low level events to high
level events



Keeping track of events . . .

Better solution . . .

◮ Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events



Keeping track of events . . .

Better solution . . .

◮ Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

◮ Each event is associated with a listener that knows what to do

◮ e.g., clicking Close window exits application



Keeping track of events . . .

Better solution . . .

◮ Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

◮ Each event is associated with a listener that knows what to do

◮ e.g., clicking Close window exits application

◮ Programming language has mechanisms for

◮ Describing what types of events a component can generate
◮ Setting up an association between components and listeners



Keeping track of events . . .

Better solution . . .

◮ Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

◮ Each event is associated with a listener that knows what to do

◮ e.g., clicking Close window exits application

◮ Programming language has mechanisms for

◮ Describing what types of events a component can generate
◮ Setting up an association between components and listeners

◮ Different events invoke different functions

◮ Window frame has Maximize, Iconify, Close buttons



Keeping track of events . . .

Better solution . . .

◮ Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

◮ Each event is associated with a listener that knows what to do

◮ e.g., clicking Close window exits application

◮ Programming language has mechanisms for

◮ Describing what types of events a component can generate
◮ Setting up an association between components and listeners

◮ Different events invoke different functions

◮ Window frame has Maximize, Iconify, Close buttons

◮ Language “sorts” out events and automatically calls the
correct function in the listener



An example

◮ A Button with one event, the button being pressed



An example

◮ A Button with one event, the button being pressed

◮ Pressing the button invokes the function buttonpush(..) in
a listener

interface ButtonListener{

public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{

...

public void buttonpush(...){

... // what to do when a button is pushed

}

}

Button b = new Button();

MyClass m = new MyClass();

b.add_listener(m); // Tell b to notify m when pushed



An example . . .

◮ We have set up an association between Button b and a
listener ButtonListener m



An example . . .

◮ We have set up an association between Button b and a
listener ButtonListener m

◮ Nothing more needs to be done!



An example . . .

◮ We have set up an association between Button b and a
listener ButtonListener m

◮ Nothing more needs to be done!

◮ Communicating each button push to the listener is done
automatically by the run-time system

◮ Information about the button push event is passed as an
object to the listener

◮ buttonpush(...) has arguments
◮ Listener can decipher source of event, for instance



Timer

◮ Recall Timer example

◮ Myclass m creates a Timer t that runs in parallel

◮ Timer t notifies a TimerOwner when it is done via a function
notify()

◮ In our example, Myclass m was itself the TimerOwner to be
notified

◮ In principle, Timer t could be passed a reference to any
object that implements TimerOwner interface



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT

◮ Relationship between components generating events and
listeners is flexible



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT

◮ Relationship between components generating events and
listeners is flexible

◮ One listener can listen to multiple objects

◮ Three buttons on window frame all report to common listener



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT

◮ Relationship between components generating events and
listeners is flexible

◮ One listener can listen to multiple objects

◮ Three buttons on window frame all report to common listener

◮ One component can inform multiple listener

◮ Exit browser reported to all windows currently open



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT

◮ Relationship between components generating events and
listeners is flexible

◮ One listener can listen to multiple objects

◮ Three buttons on window frame all report to common listener

◮ One component can inform multiple listener

◮ Exit browser reported to all windows currently open

◮ Must explicitly set up association between component and
listener



Event driven programming in Java

◮ Swing toolkit to define high-level components

◮ Built on top of lower level event handling system called AWT

◮ Relationship between components generating events and
listeners is flexible

◮ One listener can listen to multiple objects

◮ Three buttons on window frame all report to common listener

◮ One component can inform multiple listener

◮ Exit browser reported to all windows currently open

◮ Must explicitly set up association between component and
listener

◮ Events are “lost” if nobody is listening!



A detailed example in Swing

A button that paints its background red

◮ JButton is Swing class for buttons

◮ Corresponding listener class is ActionListener

◮ Only one type of event, button push — invokes
actionPerformed(...) in listener

◮ Button push is an ActionEvent



A detailed example in Swing . . .

class MyButtons{

private JButton b;

public MyButtons(ActionListener a){

b = new JButton("MyButton"); // Set the label on the button

b.addActionListener(a); // Associate an listener

}

}



A detailed example in Swing . . .

class MyButtons{

private JButton b;

public MyButtons(ActionListener a){

b = new JButton("MyButton"); // Set the label on the button

b.addActionListener(a); // Associate an listener

}

}

class MyListener implements ActionListener{

public void actionPerformed(ActionEvent evt){...}

// What to do when a button is pressed

}

class XYZ{

MyListener l = new MyListener(); // ActionListener l

MyButtons m = new MyButtons(l); // Button m, reports to l

}



A detailed example in Swing . . .

◮ To actually display the button, we have to do more

◮ Embed the button in a panel — JPanel

◮ Embed the panel in a frame — JFrame

◮ Display the frame!



A JPanel for our button . . .

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPanel extends JPanel implements ActionListener{

private JButton redButton;

public ButtonPanel(){

redButton = new JButton("Red"); // Create the button

redButton.addActionListener(this); // Make panel a listener

add(redButton); // Embed button in panel

}

public void actionPerformed(ActionEvent evt){

Color color = Color.red; // Set background colour

setBackground(color); // to red when button

repaint(); // is clicked

}

}



A JFrame for our panel . . .

◮ JFrame itself generates seven different types of events

◮ Corresponding listener class is WindowListener

◮ Each of the seven events automatically calls a different
function in WindowListener



A JFrame for our panel . . .

◮ JFrame itself generates seven different types of events

◮ Corresponding listener class is WindowListener

◮ Each of the seven events automatically calls a different
function in WindowListener

◮ Need to implement windowClosing event to terminate the
window

◮ Other six types of events can be ignored



A JFrame for our panel . . .

◮ JFrame itself generates seven different types of events

◮ Corresponding listener class is WindowListener

◮ Each of the seven events automatically calls a different
function in WindowListener

◮ Need to implement windowClosing event to terminate the
window

◮ Other six types of events can be ignored

◮ One more complication

◮ JFrame is “complex”, many layers
◮ Items to be displayed have to be added to ContentPane



A JFrame for our panel . . .

public class ButtonFrame extends JFrame implements WindowListener {

Private Container contentPane;

public ButtonFrame(){

setTitle("ButtonTest"); setSize(300, 200);

addWindowListener(this); /// ButtonFrame listens to itself

contentPane = this.getContentPane(); // ButtonPanel is added

contentPane.add(new ButtonPanel()); // to the contentPane

}

// Seven methods required for implementing WindowListener

// Six out of seven are dummies (stubs)

public void windowClosing(WindowEvent e){ // Exit when window

System.exit(0); // is killed

}

public void windowActivated(WindowEvent e){}

... // 5 more dummy methods

}



Finally, a main function

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonTest

{ public static void main(String[] args)

{ JFrame frame = new ButtonFrame();

frame.show();

}

}



Three buttons

◮ A panel with three buttons, to paint the panel red, yellow or
blue

◮ Make the panel listen to all three buttons

◮ Determine what colour to use by identifying source of the
event



import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPanel extends JPanel implements ActionListener{

private JButton yellowButton; // Panel has three buttons

private JButton blueButton;

private JButton redButton;

public ButtonPanel(){

yellowButton = new JButton("Yellow");

blueButton = new JButton("Blue");

redButton = new JButton("Red");

yellowButton.addActionListener(this); // ButtonPanel is the

blueButton.addActionListener(this); // listener for all

redButton.addActionListener(this); // three buttons

add(yellowButton);

add(blueButton);

add(redButton);

}

...



public class ButtonPanel extends JPanel implements ActionListener{

...

public void actionPerformed(ActionEvent evt){

Object source = evt.getSource(); // Find the source of the

// event

Color color = getBackground(); // Get current background

// colour

if (source == yellowButton) color = Color.yellow;

else if (source == blueButton) color = Color.blue;

else if (source == redButton) color = Color.red;

setBackground(color);

repaint();

}

}


