λ Calculus

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 6 March 2017

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!
- Need an intensional definition
- How are outputs computed from inputs?

λ-calculus: syntax

- Assume a set Var of variables
- Set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M M^{\prime}
$$

where $x \in \operatorname{Var}, M, M^{\prime} \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$ without assigning a name f
- $M M^{\prime}$: Application
- Apply the function M to the argument M^{\prime}

λ-calculus: syntax

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data
- Can also apply functions to non-meaningful data, but the result has no significance

The computation rule β

- Basic rule for computing (rewriting) is called β

$$
(\lambda x \cdot M) M^{\prime} \rightarrow_{\beta} M\left\{x \leftarrow M^{\prime}\right\}
$$

- $M\left\{x \leftarrow M^{\prime}\right\}$: substitute free occurrences of x in M by M^{\prime}
- This is the normal rule we use for functions:

$$
\begin{aligned}
& f(x)=2 x^{2}+3 x+4 \\
& f(7)=2 \cdot 7^{2}+3 \cdot 7+4=\left(2 x^{2}+3 x+4\right)\{x \leftarrow 7\} .
\end{aligned}
$$

- β is the only rule we need!
- $M M^{\prime}$ is meaningful only if M is of the form $\lambda x \cdot M^{\prime \prime}$
- Cannot do anything with expressions like $x x$

Variable capture

- Consider $(\lambda x .(\lambda y . x y)) y$
- β yields $\lambda y . y y$
- The y substituted for inner x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture

$$
(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \rightarrow_{\beta} \lambda z \cdot y z
$$

- Renaming bound variables does not change the function
- $f(x)=2 x+5$ vs $f(z)=2 z+5$

Variable capture

Formally, bound and free variables are defined as

- $F V(x)=\{x\}$, for any variable x
- $F V(\lambda x \cdot M)=F V(M)-\{x\}$
- $F V\left(M M^{\prime}\right)=F V(M) \cup F V\left(M^{\prime}\right)$
- $B V(x)=\emptyset$, for any variable x
- $B V(\lambda x \cdot M)=B V(M) \cup\{x\}$
- $B V\left(M M^{\prime}\right)=B V(M) \cup B V\left(M^{\prime}\right)$

When we apply β to $M M^{\prime}$, assume that we always rename the bound variables in M to avoid "capturing" free variables from M^{\prime}.

Encoding arithmetic

In set theory, use nesting depth to encode numbers

- Encoding of $n:\langle n\rangle$
- $\langle n\rangle=\{\langle 0\rangle,\langle 1\rangle, \ldots,\langle n-1\rangle\}$

Thus

$$
\begin{aligned}
& 0=\emptyset \\
& 1=\{\emptyset\} \\
& 2=\{\emptyset,\{\emptyset\}\} \\
& 3=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}
\end{aligned}
$$

In λ-calculus, encode n by number of times we apply a function

Encoding arithmetic ...

Church numerals

$$
\begin{aligned}
\langle 0\rangle & =\lambda f x \cdot x \\
\langle n+1\rangle & =\lambda f x \cdot f(\langle n\rangle f x)
\end{aligned}
$$

For instance

$$
\langle 1\rangle=\lambda f x . f(\langle 0\rangle f x)=\lambda f x .(f((\lambda f x \cdot x) f x))
$$

Note that $\langle 0\rangle g y \rightarrow_{\beta}(\lambda x . x) y \rightarrow_{\beta} y$.
Hence

$$
\langle 1\rangle=\ldots=\lambda f x \cdot(f(\underbrace{(\lambda f x \cdot x) f x}_{\text {apply } \beta})) \rightarrow_{\beta} \lambda f x \cdot(f x)
$$

So $\langle 1\rangle g y \rightarrow_{\beta}(\lambda x .(g x)) y \rightarrow_{\beta} g y$

Church numerals ...

$$
\langle 2\rangle=\lambda f x \cdot f(\langle 1\rangle f x)=\lambda f x \cdot(f(\underbrace{\lambda f x \cdot(f x) f x)}_{\text {apply } \beta}) \rightarrow_{\beta} \lambda f x \cdot(f(f x))
$$

SO,

$$
\langle 2\rangle g y \rightarrow_{\beta} \lambda x .(g(g x)) y=g(g y)
$$

- Let $g^{k} y$ denote $g(g(\ldots(g y)))$ with k applications of g to y
- Show by induction that

$$
\langle n\rangle=\lambda f x \cdot f(\langle n-1\rangle f x) \rightarrow_{\beta} \ldots \rightarrow_{\beta} \lambda f x \cdot\left(f^{n} x\right)
$$

Encoding arithmetic functions

Successor

- $\operatorname{succ}(n)=n+1$
- Define as $\lambda p f x . f(p f x)$

$$
\begin{aligned}
(\lambda p f x . f(p f x))\langle n\rangle \rightarrow_{\beta} \lambda f x . f(\langle n\rangle f x) \rightarrow_{\beta} \lambda f x . f\left(f^{n} x\right) & =\lambda f x . f^{n+1} x \\
& =\langle n+1\rangle
\end{aligned}
$$

