Logic, Automata and Games, August — November 2016

Exercise 3

- 1. Consider the following tree languages:
 - (a) $T_1 := \{t \in T^{\omega}_{\{a,b\}} \mid t \text{ contains exactly one node labeled } b\}$
 - (b) $T_2 := \{t \in T^{\omega}_{\{a,b\}} \mid \text{every path starting from the root of } t \text{ contains exactly one node labeled } b\}$

Construct Büchi and Muller tree automata recognizing T_1 and deterministic Büchi and Muller tree automata recognizing T_2 . Each of your construction should clearly mention the following:

- (a) The set of states,
- (b) The set of transitions,
- (c) Intuitive meaning of each state (e.g., "state q_a at position w indicates that the input letter at the parent of w is a") and
- (d) Formal proofs that the language of the tree automaton is equal to the desired language.
- 2. Given a tree t over the alphabet $\Sigma \times \Gamma$, the tree $proj_{\Sigma}(t)$ is defined as $proj_{\Sigma}(t)(w) = t(w)(1)$ for all nodes $w \in \{0,1\}^*$. Given a tree language T over the alphabet $\Sigma \times \Gamma$, the tree language $proj_{\Sigma}(T)$ is defined as the set $\{proj_{\Sigma}(t) \mid t \in T\}$. Given a parity tree automaton recognizing a tree language T over $\Sigma \times \Gamma$, construct a parity tree automaton recognizing the tree language $proj_{\Sigma}(T)$.
- 3. A parity word automaton is similar to Büchi word automaton, except that the acceptance condition is given in the form of parity condition. Every state is coloured with a natural number. A run is accepting if the maximum colour that is visited infinitely often is even. Construct a parity word automaton that recognizes the set of all infinite strings over $\{a, b\}$ such that every occurrence of the letter *a* is followed by an occurrence of the letter *b* sometime later.
- 4. A modulo-3 word automaton is similar to a parity word automaton except for the following difference: a run is accepting if the maximum colour visited infinitely often is divisible by 3. Are modulo-3 word automata more powerful than parity word automata? If yes, prove that there exists a language recognized by modulo-3 word automata that is not recognized by any parity word automata. If not, prove that given any modulo-3 word automaton, there exists a parity word automaton recognizing the same language.

- 5. A set $X \subseteq \{0,1\}^*$ can be specified in the form of an infinite binary tree t_X labeled with letters from the alphabet $\{0,1\}$: $t_X(w) = 1$ iff $w \in X$. Two sets $X, Y \subseteq \{0,1\}^*$ can be similarly specified by an infinite binary tree $t_{X,Y}$ labeled with ordered pairs from $\{0,1\} \times \{0,1\}$. The first component of every ordered pair corresponds to X and the second component corresponds to Y. Construct parity tree automata to recognize the following languages:

 - (a) $\{t_{X,Y} \in T^{\omega}_{\{0,1\} \times \{0,1\}} \mid X \subseteq Y \subseteq \{0,1\}^*\}$ (b) $\{t_{X,Y} \in T^{\omega}_{\{0,1\} \times \{0,1\}} \mid X, Y \subseteq \{0,1\}^*$ are singletons and the position in Y is the left successor of the position in $X\}$
- 6. Consider the following arena A, where round vertices belong to player 0 and boxed vertices belong to player 1.

Compute the sets $Attr_0(A, \{v_2\})$ and $Attr_1(A, \{v_2\})$.