Logic, Automata and Games, August — November 2016

Exercise 1

- 1. Let $\Sigma = \{a, b\}$. Is the following ω -language Bühci-recognizable? $\{\alpha \in \Sigma^{\omega} \mid \text{ for every } i \in \mathbb{N}, a^i \text{ is an infix of } \alpha\}$. Is some subset of this language Büchi recognizable?
- 2. Construct an infinite string α and a non-deterministic Büchi automaton with set of states Q with the following property: in the power set automaton, the run on α visits the power state $Q' \subseteq Q$ infinitely often such that at least one state in Q' is a final state, but α is rejected by the original non-deterministic Büchi automaton.
- 3. Construct an infinite string α and a non-deterministic Büchi automaton with set of states Q with the following property: α is accepted by the original Büchi automaton, but in every power state visited by the run of the power set automaton, there is at least one state that is not final.
- 4. Formally define U^{ω} and $\lim(U)$ for $U \subseteq \Sigma^*$. For $U, V \subseteq \Sigma^+$, prove or disprove the following equations:
 - (a) $(U \cup V)^{\omega} = U^{\omega} \cup V^{\omega}$
 - (b) $U^{\omega} = \lim(U^+)$
- 5. Let $\Sigma = \mathcal{P}(\{a_1, b_1, a_2, b_2, \dots, a_k, b_k\})$. Design a Büchi automaton that accepts precisely the set of infinite strings α satisfying the following property: for any $j \in \{1, \dots, k\}$ and $i \in \mathbb{N}$ such that $a_j \in \alpha(i)$, there is some i' > i such that $b_j \in \alpha(i')$ and for every $i'' \in \{i, \dots, i'-1\}, a_j \in \alpha(i'')$.