Advanced Machine Learning Bayesian Optimization

Based on Slides by Sourish Das and Madhavan Mukund

Chennai Mathematical Institute

2022

Pranabendu Misra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Bayesian optimization (BayesOpt) is a class of ML optimization methods focused on solving the problem

 $\max_{\mathbf{x}\in A} f(\mathbf{x}),$

where

- $\mathbf{x} \in \mathbb{R}^d$, typically $d \leq 20$
- Typically $A = \{\mathbf{x} \in \mathbb{R}^d | a_i \le x_i \le b_i\}$ is a hyper-rectangle
- *f* is expensive to evaluate.
- Ex: f is a deep network model and with L many layers and qmany nodes in each layer; $L = 2, 3, 4 \cdots$; $q = 2, 3, 4, \cdots$; **C** so $\mathbf{x} = (L, q)$ and f = RMSE in validation dataset

Nature of f

- f is expensive to evaluate each evaluation may that maybe performed may take substantial amount of time and/or monetory cost (e.g., buying cloud computing power)
- ► f lacks known special structure like concavity or linearity
- ► When we evaluate f, we observe on f(x) and no first and second order derivatives available

- so gradient descent type algorithms are not possible
- f is a 'black box.'
- Goal: Find a global rather than local optimum.

- BayesOpt is designed for black-box derivative free global optimization.
- BayesOpt consists of two main components:
 - 1. Bayesian statistical model for modeling the objective function f

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. Acquisition function for deciding where to sample next.

Basic pseudo-code for Bayesian optimization

- Place a Gaussian process prior model on f
- Set $n = n_0$, observe f at n_0 different points, i.e., $f(\mathbf{x}_1), f(\mathbf{x}_2), \cdots, f(\mathbf{x}_{n_0})$
- ▶ while $n \le N$ do
 - 1. Update the posterior probability distribution on *f*

Let x_n be a maximizer of the acquisition α function over x
 Note Acquisition function α(x) is computed using the current posterior distribution.

3. Observe $y_n = f(\mathbf{x}_n)$

4. n = n + 1

end while

▶ Return a solution: the point evaluated with the largest $f(\mathbf{x})$

smallest C'1

$-we have (n_i, y_i = f(n_i))$	i) for $i \in \{1, 2, -n\}$
- Assume we have	a multivariate gampian dist-
$[Y_1, Y_2, \cdots, Y_m] \sim$	$N(M, \Sigma)$
$\mu = \left[M_1, \dots, M_n \right]$	$\sum = \begin{bmatrix} \sum_{1,1} & \sum_{1,2} & \cdots & \sum_{1,n} \\ \sum_{2,1} & \sum_{2,2} & \cdots & \sum_{2,n} \\ \vdots & \vdots & \vdots \\ i & i & i & i \\ i & i & i & i \\ i & i &$
Mean	$\left[\sum_{n,1} \sum_{n,2} \cdots \sum_{n,n} \right]$
- We assume that f con be approximated	Co-variances
by a multivariate	Gaussian Bocen $\equiv n \rightarrow \infty$
gournian dist,	

- We choose some suitable initial value for Mi mean function $\mu(ui) = \mu i$ Typically $\mu i = 0$
- The choice of the co-variances $\Sigma_{i,j}$ is more important - covariance function or Kernel $\Sigma_{i,j} = \Sigma(u_i, u_j)$
- Grownian Kornel ($\frac{\ u_i - u_j\ ^2}{l^2}$) discretly compute $\sum(u_i, u_j) = \alpha e^{-\left(\frac{\ u_i - u_j\ ^2}{l^2}\right)}$ control evaluating $y_i = f(u_i)$
A popular choice

- we have $(n_i, \gamma_i = f(u_i))$ for $i \in \{1, 2, ..., n\}$ Assume we have a multivariate gampion dist- $[Y_1, Y_2, \dots, Y_n] \sim N(M, \Sigma)$ - it we had $\chi_1 \chi_2 - \chi_{n-1}$ then we get a Prob dist on possible values of χ_n $Y_n [[y_1 - y_{n-1}] \sim N (\hat{\mu}_n, \hat{\sigma}_n^2)$ $\widehat{\mu}_{n} = \left[\sum_{n,i}, \dots, \sum_{n,n-1} \right] \sum_{i=1}^{-1} \left[\gamma_{i} - \mu_{i} \right]_{i=1-n-1} + \mu_{n}$ $\hat{\sigma}_{n}^{2} = \sum_{n,n} - [\sum_{n,1}, \dots, \sum_{n,n-1}] \sum_{n-1} [\sum_{n,n}, \dots, \sum_{n-1}, n]$ Posterion Prob Distribution

Modeling objective function with GP Regression

Consider the following

$$\mathbf{y} = f(\mathbf{x}) + \boldsymbol{\epsilon}$$

Represents f(x) as

$$f(\mathbf{x}) = \sum_{j=1}^{K} \phi_j(\mathbf{x}) \beta_j = \phi \beta,$$

we say ϕ is a basis system for $f(\mathbf{x})$, where $\phi_j(\mathbf{x})$ is completely known.

• Problem is β is unknown - hence we estimate β .

Modeling objective function with GP Regression

We are writing the function with its basis expansion

$$\mathsf{y} = \phi eta + \epsilon$$

The basis φ is fully known, such as
 φ = {1, sin(ωx), cos(ωx), sin(2ωx), cos(2ωx)...}, ω is known

$$\bullet \quad \phi = \{1, \exp(-\lambda_1(\mathbf{x} - c_1)^2), \exp(-\lambda_2(\mathbf{x} - c_2)^2) \cdots \}$$

• Problem is β is unknown - hence we estimate β .

Bayesian method

Model:

$$\mathbf{y} = f(\mathbf{x}) + \boldsymbol{\epsilon}$$

$$\boldsymbol{\epsilon} \sim \mathbf{N}(0, \sigma^2 \mathbf{I}) \implies \mathbf{y} \sim \mathbf{N}(f(\mathbf{x}), \sigma^2 \mathbf{I}),$$

$$f(\mathbf{x}) = \boldsymbol{\phi}\boldsymbol{\beta} = \sum_{k=1}^{K} \phi_k(\mathbf{x})\beta_k + \sum_{k=K+1}^{\infty} \phi_k(\mathbf{x})\beta_k,$$

where $|\sum_{k=K+1}^{\infty} \phi_k(\mathbf{x}) \beta_k| < \epsilon; \ \epsilon \ge 0$

- β is unknown and we want to estimate
 Assuming β's are uncorrelated random variable and φ_k(x) are known deterministic real-valued functions.
- Then due to Kosambi-Karhunen-Loeve theorem, we can say that f(x) is a random realisation from a stochastic process.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Gaussian Process Prior

- As $f(\mathbf{x})$ is a stochastic process, if we assume $\beta \sim \mathbf{N}(0, \sigma^2 \mathbf{I})$ then $f(\mathbf{x}) = \phi \beta$ follow Gaussian process.
- Since f(x) is unknown function; therefore induced process on f(x) is known as 'Gaussian Process Prior'.
 Prior on β:

$$p(oldsymbol{eta}) \propto \exp\left(-rac{1}{2\sigma^2}oldsymbol{eta}^Toldsymbol{eta}
ight)$$

Induced Prior on $f = \phi \beta$:

$$p(f) \propto \exp\left(-rac{1}{2\sigma^2}eta^T oldsymbol{\phi}^T oldsymbol{K}^{-1} oldsymbol{\phi}oldsymbol{eta}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gaussian Process Prior

• The prior mean and covariance of $f(\mathbf{x})$ are given by

$$\mathbf{E}[f(\mathbf{x})] = \phi(\mathbf{x})E[\boldsymbol{\beta}] = \phi\boldsymbol{\beta}_0$$

$$\begin{aligned} \mathbf{cov}[f(\mathbf{x})] &= \mathbf{E}[f(\mathbf{x}).f(\mathbf{x}')^T] = \phi(\mathbf{x}).\mathbf{E}[\boldsymbol{\beta}.\boldsymbol{\beta}^\mathsf{T}]\phi(t')^T \\ &= \sigma^2\phi(\mathbf{x}).\phi(\mathbf{x}')^T = \mathbf{K}(\mathbf{x},\mathbf{x}') \end{aligned}$$

Gaussian Process Prior

• If
$$\beta_0 = 0$$
 then

$$\mathbf{E}[f(\mathbf{x})] = \phi(\mathbf{x})E[\boldsymbol{\beta}] = \phi\boldsymbol{\beta}_0 = 0$$

$$f(\mathbf{x}) \sim \mathcal{N}_n(\mathbf{0}, \mathbf{K}(\mathbf{x}, \mathbf{x}')), \ \boldsymbol{\epsilon} \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$y(\mathbf{x}) \sim \mathcal{N}_n(\mathbf{0}, \mathbf{K}(\mathbf{x}, \mathbf{x}') + \sigma^2 \mathbf{I})$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Gaussian Process Regression

- The estimated value of y for a given x_{*} is the mean (expected) value of the functions sampled from from the posterior at that value of x_{*}.
- Suppose µ(x) = φ(x)β₀ = 0, then expected value of the estimate at a given x_∗ is given by

$$\hat{f}(\mathbf{x}_{*}) = \mathbf{E}(f(\mathbf{x}_{*})|\mathbf{x}, \mathbf{y})$$

= $\mathbf{K}(\mathbf{x}_{*}, \mathbf{x}) \cdot \underbrace{[\mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma^{2} \cdot \mathbf{I}]^{-1}}_{\text{Matrix of order } n} \cdot \mathbf{y}$

• The time complexity of the matrix inversion is $\mathcal{O}(n^3)$

- mean function $\mu(\alpha_i) = \mu_i$	• •
- mean function $\mu(u_i) = \mu_i$ - covariance function of Kernel $\sum_{i,j} = \sum (u_i, u_j)$	• •
- Growpion Kornel $\sum(u_i, u_j) = \alpha e^{-\left(\frac{ u_i - u_j ^2}{l^2}\right)}$	• •
$\sum(u_i, u_j) = \alpha \in \left(\frac{1^2}{l^2} \right)$	• •
A popular choice	· ·
- How can we choose the parameters	· ·
$\mu, \alpha, l 2$	• •
	· · ·

Likelihood Method: Gaussian Process Prior Model

Data model:

$$\mathbf{y}(\mathbf{x}) ~\sim~ \mathcal{N}_{n} \Big(\mathbf{0}, \mathbf{K}_{lpha,
ho}(\mathbf{x}, \mathbf{x}') + \sigma^2 \mathbf{I} \Big)$$

• Static or Hyperparameters: $\theta = \{\alpha, \rho, \sigma^2\}$

Likelihood function:

$$f(oldsymbol{eta}|\mathbf{y},\phi,\sigma^2) \propto (\sigma^2)^{-p/2} \exp\left(-rac{1}{2\sigma^2}(\mathbf{y}{-}f)^T [\mathbf{K}{+}\sigma^2 \mathbf{I}]^{-1}(\mathbf{y}{-}f)
ight)$$

Negative Log-likelihood function:

$$l(oldsymbol{eta}) \propto rac{1}{2\sigma^2} \mathbf{y}^{\mathcal{T}} [\mathbf{K} + \sigma^2 \mathbf{I}]^{-1} \mathbf{y}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gaussian Process Prior Model

Negative log-posterior:

$$p(oldsymbol{eta}) \propto rac{1}{2\sigma^2} igg(\mathbf{y}^{\mathcal{T}} [\mathbf{K} + \sigma^2 \mathbf{I}]^{-1} \mathbf{y} + oldsymbol{eta}^{\mathcal{T}} \phi^{\mathcal{T}} \mathbf{K}^{-1} \phi oldsymbol{eta} igg)$$

- Hence the induced penalty matrix in the Gaussian process prior is identity matrix
- ► Still hyperparameters: $\theta = \{\alpha, \rho, \sigma^2\}$ are unknown.

► One can use optimization routine to estimate the MLE/MAP. Pick & that maximizes the probability of **C**Mi the seen data

Model:

$$y = \frac{\sin(x)}{x} + \epsilon,$$

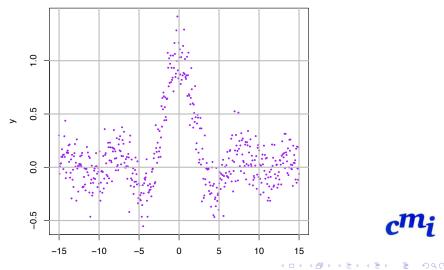
where $\epsilon \sim N(0, \tau)$.

- Simulate data from the above model and pretend we don't know the true function.
- **Objective** is to estimate/learn the function.

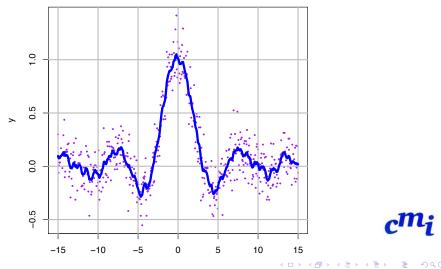
c^mi

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

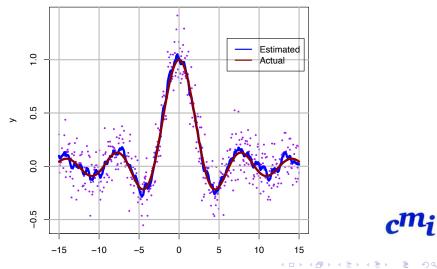
Objective is to estimate/learn the function.



Objective is to estimate/learn the function.



Objective is to estimate/learn the function.



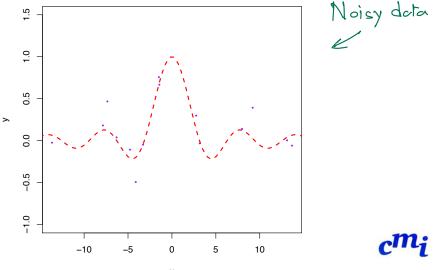
Obs; Only need to model near the optimum, not everywhere Back to BayesOpt

• As we modeled the objective function f by \hat{f}

- With f we try to predict the performance of the deep network model for a possible choices of hyper-parameter x.
- Next we model the acusition function which recommend where will be the next point of hyper-parameter will be where to sample f(n) • One can use the \hat{f} directly as acquisition function or one can sample the acquisition function $\alpha(\mathbf{x})$ from the posterion
 - distribution of f, i.e.,

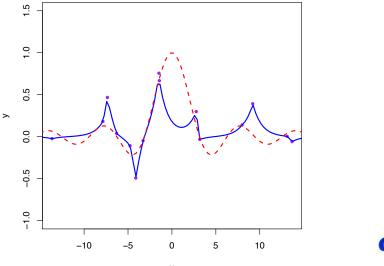
$$\alpha(\mathbf{x}) \sim \mathcal{N}(\hat{f}, \operatorname{cov}(\hat{f}))$$

Bayesian Optimization: First Iteration (maximization)



х

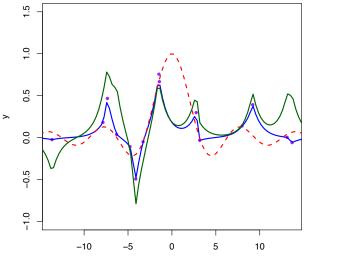
Bayesian Optimization: First Iteration



х

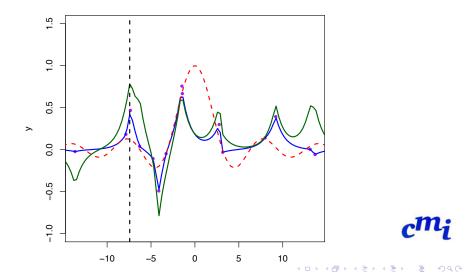
< ロ > < 回 > < 回 > < 回 >

Bayesian Optimization: First Iteration



х

Bayesian Optimization: First Iteration [1] -7.424242



Bayesian Optimization: Iteration = 50 [1] 0.2705411

