Advanced Machine Learning

Bayesian Optimization

Based on Slides by
Sourish Das and Madhavan Mukund

Chennai Mathematical Institute

Introduction

Bayesian optimization (BayesOpt) is a class of ML optimization methods focused on solving the problem

$$
\max _{\mathbf{x} \in A} f(\mathbf{x})
$$

where

- $\mathbf{x} \in \mathbb{R}^{d}$, typically $d \leq 20$
- Typically $A=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid a_{i} \leq x_{i} \leq b_{i}\right\}$ is a hyper-rectangle
- f is expensive to evaluate.

Ex: f is a deep network model and with L many layers and q many nodes in each layer; $L=2,3,4 \cdots ; q=2,3,4, \cdots$; so $\mathbf{x}=(L, q)$ and $f=$ RMSE in validation dataset

Nature of f

- f is expensive to evaluate - each evaluation may that maybe performed may take substantial amount of time and/or monetory cost (e.g., buying cloud computing power)
- f lacks known special structure like concavity or linearity
- When we evaluate f, we observe on $f(\mathbf{x})$ and no first and second order derivatives available
- so gradient descent type algorithms are not possible
- f is a 'black box.'
- Goal: Find a global rather than local optimum.

Overview of BayesOpt

- BayesOpt is designed for black-box derivative free global optimization.
- BayesOpt consists of two main components:

1. Bayesian statistical model for modeling the objective function f
2. Acquisition function for deciding where to sample next.

Basic pseudo-code for Bayesian optimization

- Place a Gaussian process prior model on f
- Set $n=n_{0}$, observe f at n_{0} different points, i.e., $f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right), \cdots, f\left(\mathbf{x}_{n_{0}}\right)$
- while $n \leq N$ do

1. Update the posterior probability distribution on f
2. Let \mathbf{x}_{n} be a maximizer of the acquisition α function over \mathbf{x} Note Acquisition function $\alpha(\mathbf{x})$ is computed using the current posterior distribution.
3. Observe $y_{n}=f\left(\mathbf{x}_{n}\right)$
4. $n=n+1$

- end while
- Return a solution: the point evaluated with the largest $f(\mathbf{x})$
- we have $\left(x_{i}, y_{i}=f\left(x_{i}\right)\right)$ for $i \in\{1,2, \ldots n\}$
- Assume we have a multivariate gaunian dist-

$$
\begin{aligned}
& {\left[y_{1}, y_{2} \cdots y_{n}\right] \sim N(\mu, \Sigma)} \\
& \mu= \\
& \\
& \quad \text { mean }
\end{aligned}
$$

- We assume that t con be approximated by a multivariate gounsion dist,
- We choose some suitable initial value for μ_{i} mean function $\mu\left(x_{i}\right)=\mu_{i} \quad$ Typically $\mu_{i}=0$
- The choice of the co-varionces $\sum_{i, j}$ is more important
- covariance function or Kernel $\frac{\sum_{i, j}=\sum\left(u_{i}, u_{j}\right)}{\uparrow}$
- Gambian Kernel

$$
\begin{aligned}
& \text { Gambian Kernel } \\
& \sum\left(x_{i}, x_{j}\right)=a e^{-\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{l^{2}}\right)}
\end{aligned}
$$ covariances without evaluating $y_{i}=f\left(x_{i}\right)$ A popular choice

- we have $\left(x_{i}, y_{i}=f\left(x_{i}\right)\right.$ for $i \in\{1,2, \ldots n\}$
- Assume we have a multivariate gammon dist-

$$
\left[y_{1}, y_{2}, \ldots y_{n}\right] \sim N(\mu, \Sigma)
$$

- if we had $y_{1} y_{2}-y_{n-1}$ then we get a Prob dist on possible values of y_{n}

$$
\begin{aligned}
& Y_{n} \mid\left[y_{1} \ldots y_{n-1}\right] \sim N\left(\hat{\mu}_{n}, \hat{\sigma}_{n}^{2}\right) \\
& \left.\hat{\mu}_{n}=\left[\Sigma_{n, 1}, \ldots \Sigma_{n, n-1}\right)\right] \Sigma^{-1}\left[y_{i}-\mu_{i}\right]_{i=1, n-1}+\mu_{n} \\
& \hat{\sigma}_{n}^{2}=\Sigma_{n, n}-\left[\Sigma_{n, 1}, \ldots, \Sigma_{n, n-1}\right] \sum^{-1}\left[\Sigma_{1, n}, \ldots \Sigma_{n-1, n}\right]
\end{aligned}
$$

Posterior Prob Distribution

Modeling objective function with GP Regression

- Consider the following

$$
\mathbf{y}=f(\mathbf{x})+\boldsymbol{\epsilon}
$$

- Represents $f(\mathbf{x})$ as

$$
f(\mathbf{x})=\sum_{j=1}^{K} \phi_{j}(\mathbf{x}) \beta_{j}=\boldsymbol{\phi} \boldsymbol{\beta}
$$

we say ϕ is a basis system for $f(\mathbf{x})$, where $\phi_{j}(\mathbf{x})$ is completely known.

- Problem is $\boldsymbol{\beta}$ is unknown - hence we estimate $\boldsymbol{\beta}$.

Modeling objective function with GP Regression

- We are writing the function with its basis expansion

$$
\mathbf{y}=\phi \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- The basis ϕ is fully known, such as
- $\phi=\{1, \sin (\omega \mathbf{x}), \cos (\omega \mathbf{x}), \sin (2 \omega \mathbf{x}), \cos (2 \omega \mathbf{x}) \cdots\}, \omega$ is known
- $\phi=\left\{1, \exp \left(-\lambda_{1}\left(\mathbf{x}-c_{1}\right)^{2}\right), \exp \left(-\lambda_{2}\left(\mathbf{x}-c_{2}\right)^{2}\right) \cdots\right\}$
- Problem is $\boldsymbol{\beta}$ is unknown - hence we estimate $\boldsymbol{\beta}$.

Bayesian method

- Model:

$$
\begin{gathered}
\mathbf{y}=f(\mathbf{x})+\boldsymbol{\epsilon} \\
\boldsymbol{\epsilon} \sim \mathbf{N}\left(0, \sigma^{2} \mathbf{I}\right) \Longrightarrow \mathbf{y} \sim \mathbf{N}\left(f(\mathbf{x}), \sigma^{2} \mathbf{I}\right) \\
f(\mathbf{x})=\boldsymbol{\phi} \boldsymbol{\beta}=\sum_{k=1}^{K} \phi_{k}(\mathbf{x}) \beta_{k}+\sum_{k=K+1}^{\infty} \phi_{k}(\mathbf{x}) \beta_{k}
\end{gathered}
$$

$$
\text { where }\left|\sum_{k=K+1}^{\infty} \phi_{k}(\mathbf{x}) \beta_{k}\right|<\epsilon ; \epsilon \geq 0
$$

- $\boldsymbol{\beta}$ is unknown and we want to estimate Assuming $\boldsymbol{\beta}$'s are uncorrelated random variable and $\phi_{k}(\mathbf{x})$ are known deterministic real-valued functions.
- Then due to Kosambi-Karhunen-Loeve theorem, we can say that $f(\mathbf{x})$ is a random realisation from a stochastic process.

Gaussian Process Prior

- As $f(\mathbf{x})$ is a stochastic process, if we assume $\boldsymbol{\beta} \sim \mathbf{N}\left(0, \sigma^{2} \mathbf{I}\right)$ then $f(\mathbf{x})=\boldsymbol{\phi} \boldsymbol{\beta}$ follow Gaussian process.
- Since $f(\mathbf{x})$ is unknown function; therefore induced process on $f(\mathbf{x})$ is known as 'Gaussian Process Prior'.
Prior on $\boldsymbol{\beta}$:

$$
p(\boldsymbol{\beta}) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \boldsymbol{\beta}^{T} \boldsymbol{\beta}\right)
$$

Induced Prior on $f=\boldsymbol{\phi} \boldsymbol{\beta}$:

$$
p(f) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \boldsymbol{\beta}^{T} \boldsymbol{\phi}^{T} \mathbf{K}^{-1} \boldsymbol{\phi} \boldsymbol{\beta}\right)
$$

Gaussian Process Prior

- The prior mean and covariance of $f(\mathbf{x})$ are given by

$$
\mathbf{E}[f(\mathbf{x})]=\phi(\mathbf{x}) E[\boldsymbol{\beta}]=\phi \boldsymbol{\beta}_{0}
$$

$$
\begin{aligned}
\operatorname{cov}[f(\mathbf{x})] & =\mathbf{E}\left[f(\mathbf{x}) \cdot f\left(\mathbf{x}^{\prime}\right)^{T}\right]=\phi(\mathbf{x}) \cdot \mathbf{E}\left[\boldsymbol{\beta} \cdot \boldsymbol{\beta}^{\mathbf{T}}\right] \phi\left(t^{\prime}\right)^{T} \\
& =\sigma^{2} \phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right)^{T}=\mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

$$
f(\mathbf{x}) \sim \mathcal{N}_{n}\left(\phi(\mathbf{x}) \boldsymbol{\beta}_{0}, \mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}_{n}\left(0, \sigma^{2} \mathbf{I}\right)
$$

$$
y(\mathbf{x}) \sim \mathcal{N}_{n}\left(\phi(\mathbf{x}) \boldsymbol{\beta}_{0}, \mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\sigma^{2} \mathbf{I}\right)
$$

Gaussian Process Prior

- If $\boldsymbol{\beta}_{0}=0$ then

$$
\mathbf{E}[f(\mathbf{x})]=\phi(\mathbf{x}) E[\boldsymbol{\beta}]=\phi \boldsymbol{\beta}_{0}=0
$$

$$
\begin{aligned}
f(\mathbf{x}) & \sim \mathcal{N}_{n}\left(\mathbf{0}, \mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}_{n}\left(0, \sigma^{2} \mathbf{I}\right) \\
y(\mathbf{x}) & \sim \mathcal{N}_{n}\left(\mathbf{0}, \mathbf{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

Gaussian Process Regression

- The estimated value of \mathbf{y} for a given \mathbf{x}_{*} is the mean (expected) value of the functions sampled from from the posterior at that value of \mathbf{x}_{*}.
- Suppose $\mu(\mathbf{x})=\phi(\mathbf{x}) \boldsymbol{\beta}_{0}=0$, then expected value of the estimate at a given \mathbf{x}_{*} is given by

$$
\begin{aligned}
\hat{f}\left(\mathbf{x}_{*}\right) & =\mathbf{E}\left(f\left(\mathbf{x}_{*}\right) \mid \mathbf{x}, \mathbf{y}\right) \\
& =\mathbf{K}\left(\mathbf{x}_{*}, \mathbf{x}\right) \cdot \underbrace{\left[\mathbf{K}(\mathbf{x}, \mathbf{x})+\sigma^{2} \cdot \mathbf{I}\right]^{-1}}_{\text {Matrix of order } n} \cdot \mathbf{y}
\end{aligned}
$$

- The time complexity of the matrix inversion is $\mathcal{O}\left(n^{3}\right)$
- mean function $\mu\left(x_{i}\right)=\mu_{i}$
- covariance function or kernel $\sum_{i, j}=\sum\left(u_{i}, u_{j}\right)$
- Gambian Kernel

$$
\begin{aligned}
& \text { Samsian Kernel } \\
& \sum\left(x_{i}, x_{j}\right)=a e^{-\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{l^{2}}\right)}
\end{aligned}
$$

A popular choice

- How can we choose the parameters $\mu, a, l ?$

Likelihood Method: Gaussian Process Prior Model

- Data model:

$$
\mathbf{y}(\mathbf{x}) \sim \mathcal{N}_{n}\left(\mathbf{0}, \mathbf{K}_{\alpha, \rho}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\sigma^{2} \mathbf{I}\right)
$$

- Static or Hyperparameters: $\boldsymbol{\theta}=\left\{\alpha, \rho, \sigma^{2}\right\}$
- Likelihood function:

$$
f\left(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\phi}, \sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-p / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(\mathbf{y}-f)^{T}\left[\mathbf{K}+\sigma^{2} \mathbf{I}\right]^{-1}(\mathbf{y}-f)\right)
$$

- Negative Log-likelihood function:

$$
I(\boldsymbol{\beta}) \propto \frac{1}{2 \sigma^{2}} \mathbf{y}^{\boldsymbol{T}}\left[\mathbf{K}+\sigma^{2} \mathbf{I}\right]^{-1} \mathbf{y}
$$

Gaussian Process Prior Model

- Negative log-posterior:

$$
p(\boldsymbol{\beta}) \propto \frac{1}{2 \sigma^{2}}\left(\mathbf{y}^{\top}\left[\mathbf{K}+\sigma^{2} \mathbf{I}\right]^{-1} \mathbf{y}+\boldsymbol{\beta}^{\top} \boldsymbol{\phi}^{\top} \mathbf{K}^{-1} \boldsymbol{\phi} \boldsymbol{\beta}\right)
$$

- Hence the induced penalty matrix in the Gaussian process prior is identity matrix
- Still hyperparameters: $\boldsymbol{\theta}=\left\{\alpha, \rho, \sigma^{2}\right\}$ are unknown.
- One can use optimization routine to estimate the MLE/MAP. Pick θ that maximizes the probability of $c^{\boldsymbol{M}}$ i the seen data

Experiment with GP Regression

- Model:

$$
y=\frac{\sin (x)}{x}+\epsilon
$$

where $\epsilon \sim N(0, \tau)$.

- Simulate data from the above model and pretend we don't know the true function.
- Objective is to estimate/learn the function.

Experiment with GP Regression

Objective is to estimate/learn the function.

Experiment with GP Regression

Objective is to estimate/learn the function.

Experiment with GP Regression

Objective is to estimate/learn the function.

Back to BayesOpt Obs: Only need to model near the optimum, not everywhere

- As we modeled the objective function f by \hat{f}
- With f we try to predict the performance of the deep network model for a possible choices of hyper-parameter \mathbf{x}.
- Next we model the acusition function which recomend where will be the next point of hyper-parameter will be

$$
\rightarrow \text { where to sample } f(x)
$$

- One can use the \hat{f} directly as acquisition function or one can sample the acquisition function $\alpha(\mathbf{x})$ from the posterion distribution of f, ie.,

$$
\alpha(\mathbf{x}) \sim \mathcal{N}(\hat{f}, \operatorname{cov}(\hat{f}))
$$

Bayesian Optimization: First Iteration (maximization)

Noisy deta
$c^{\boldsymbol{m}_{i}}$

Bayesian Optimization: First Iteration

Bayesian Optimization: First Iteration

$c^{m_{i}}$

Bayesian Optimization: First Iteration

[1] -7.424242

Bayesian Optimization: Iteration $=50$

[1] 0.2705411

$c^{m_{i}}$

