
Advanced Machine Learning

Bayesian Optimization

Sourish Das and Madhavan Mukund

Chennai Mathematical Institute

Aug-Nov, 2019

Pranabendu Misra

Based on Slides by

 2022

Introduction

Bayesian optimization (BayesOpt) is a class of ML optimization
methods focused on solving the problem

max
x2A

f (x),

where

I x 2 Rd , typically d  20

I Typically A = {x 2 Rd
|ai  xi  bi} is a hyper-rectangle

I f is expensive to evaluate.

Ex: f is a deep network model and with L many layers and q
many nodes in each layer; L = 2, 3, 4 · · · ; q = 2, 3, 4, · · · ;
so x = (L, q) and f = RMSE in validation dataset

Nature of f

I f is expensive to evaluate – each evaluation may that maybe
performed may take substantial amount of time and/or
monetory cost (e.g., buying cloud computing power)

I f lacks known special structure like concavity or linearity

I When we evaluate f , we observe on f (x) and no first and
second order derivatives available

I so gradient descent type algorithms are not possible

I f is a ‘black box.’

I Goal: Find a global rather than local optimum.

Overview of BayesOpt

I BayesOpt is designed for black-box derivative free global
optimization.

I BayesOpt consists of two main components:
1. Bayesian statistical model for modeling the objective function f

2. Acquisition function for deciding where to sample next.

Basic pseudo-code for Bayesian optimization

I Place a Gaussian process prior model on f

I Set n = n0, observe f at n0 di↵erent points, i.e.,
f (x1), f (x2), · · · , f (xn0)

I while n  N do
1. Update the posterior probability distribution on f

2. Let xn be a maximizer of the acquisition ↵ function over x
Note Acquisition function ↵(x) is computed using the current

posterior distribution.

3. Observe yn = f (xn)

4. n = n + 1
I end while

I Return a solution: the point evaluated with the largest f (x)

Modeling objective function with GP Regression

I Consider the following

y = f (x) + ✏

I Represents f (x) as

f (x) =
KX

j=1

�j(x)�j = ��,

we say � is a basis system for f (x), where �j(x) is completely
known.

I Problem is � is unknown - hence we estimate �.

Modeling objective function with GP Regression

I We are writing the function with its basis expansion

y = �� + ✏

I The basis � is fully known, such as
I � = {1, sin(!x), cos(!x), sin(2!x), cos(2!x) · · · }, ! is known

I � = {1, exp(��1(x� c1)2), exp(��2(x� c2)2) · · · }

I Problem is � is unknown - hence we estimate �.

Bayesian method

I Model:
y = f (x) + ✏

✏ ⇠ N(0,�2
I) =) y ⇠ N(f (x),�2

I),

f (x) = �� =
KX

k=1

�k(x)�k +
1X

k=K+1

�k(x)�k ,

where |
P1

k=K+1 �k(x)�k | < ✏; ✏ � 0

I � is unknown and we want to estimate

Assuming �’s are uncorrelated random variable and �k(x) are
known deterministic real-valued functions.

I Then due to Kosambi-Karhunen-Loeve theorem,
we can say that f (x) is a random realisation from a
stochastic process.

Gaussian Process Prior

I As f (x) is a stochastic process, if we assume � ⇠ N(0,�2
I)

then f (x) = �� follow Gaussian process.

I Since f (x) is unknown function; therefore induced process on
f (x) is known as ‘Gaussian Process Prior’.

Prior on �:

p(�) / exp

✓
�

1

2�2
�T�

◆

Induced Prior on f = ��:

p(f) / exp

✓
�

1

2�2
�T�T

K
�1��

◆

Gaussian Process Prior

I The prior mean and covariance of f (x) are given by

E[f (x)] = �(x)E [�] = ��0

cov[f (x)] = E[f (x).f (x0)T] = �(x).E[�.�T]�(t 0)T

= �2�(x).�(x0)T = K(x, x0)

f (x) ⇠ Nn(�(x)�0,K(x, x0)), ✏ ⇠ Nn(0,�
2
I)

y(x) ⇠ Nn

⇣
�(x)�0,K(x, x0) + �2

I

⌘

Gaussian Process Prior

I If �0 = 0 then

E[f (x)] = �(x)E [�] = ��0 = 0

f (x) ⇠ Nn(0,K(x, x0)), ✏ ⇠ Nn(0,�
2
I)

y(x) ⇠ Nn

⇣
0,K(x, x0) + �2

I

⌘

Gaussian Process Regression

I The estimated value of y for a given x⇤ is the mean
(expected) value of the functions sampled from from the
posterior at that value of x⇤.

I Suppose µ(x) = �(x)�0 = 0, then expected value of the
estimate at a given x⇤ is given by

f̂ (x⇤) = E(f (x⇤)|x, y)

= K(x⇤, x). [K(x, x) + �2.I]�1

| {z }
Matrix of order n

.y

I The time complexity of the matrix inversion is O(n3)

Likelihood Method: Gaussian Process Prior Model

I Data model:

y(x) ⇠ Nn

⇣
0,K↵,⇢(x, x

0) + �2
I

⌘

I Static or Hyperparameters: ✓ = {↵, ⇢,�2
}

I Likelihood function:

f (�|y,�,�2) / (�2)�p/2 exp

✓
�

1

2�2
(y�f)T [K+�2

I]�1(y�f)

◆

I Negative Log-likelihood function:

l(�) /
1

2�2
y
T [K+ �2

I]�1
y

Gaussian Process Prior Model

I Negative log-posterior:

p(�) /
1

2�2

✓
y
T [K+ �2

I]�1
y + �T�T

K
�1��

◆

I Hence the induced penalty matrix in the Gaussian process
prior is identity matrix

I Still hyperparameters: ✓ = {↵, ⇢,�2
} are unknown.

I One can use optimization routine to estimate the MLE/MAP.

Experiment with GP Regression

I Model:

y =
sin(x)

x
+ ✏,

where ✏ ⇠ N(0, ⌧).

I Simulate data from the above model and pretend we don’t
know the true function.

I Objective is to estimate/learn the function.

Experiment with GP Regression

Objective is to estimate/learn the function.

−15 −10 −5 0 5 10 15

−0
.5

0.
0

0.
5

1.
0

x

y

Experiment with GP Regression

Objective is to estimate/learn the function.

−15 −10 −5 0 5 10 15

−0
.5

0.
0

0.
5

1.
0

x

y

Experiment with GP Regression

Objective is to estimate/learn the function.

−15 −10 −5 0 5 10 15

−0
.5

0.
0

0.
5

1.
0

x

y

Estimated
Actual

Back to BayesOpt

I As we modeled the objective function f by f̂

I With f we try to predict the performance of the deep network
model for a possible choices of hyper-parameter x.

I Next we model the acusition function which recomend where
will be the next point of hyper-parameter will be

I One can use the f̂ directly as acquisition function or one can
sample the acquisition function ↵(x) from the posterion
distribution of f , i.e.,

↵(x) ⇠ N (f̂ , cov(f̂))

Bayesian Optimization: First Iteration

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

Bayesian Optimization: First Iteration

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

Bayesian Optimization: First Iteration

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

Bayesian Optimization: First Iteration

[1] -7.424242

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

Bayesian Optimization: Iteration = 50

[1] 0.2705411

−15 −10 −5 0 5 10 15

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

