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Introduction

Bayesian optimization (BayesOpt) is a class of ML optimization
methods focused on solving the problem

f
e 00

where
» x € RY, typically d < 20

» Typically A= {x € R9a; < x; < b;} is a hyper-rectangle
» f is expensive to evaluate.

Ex: f is a deep network model and with L many layers and g
many nodes in each layer; L=2,3,4---; qg=2,3,4,---; cmi
sox=(L,q) and f = RMSE in validation dataset



Nature of f

» f is expensive to evaluate — each evaluation may that maybe
performed may take substantial amount of time and/or
monetory cost (e.g., buying cloud computing power)

v

f lacks known special structure like concavity or linearity

v

When we evaluate f, we observe on f(x) and no first and
second order derivatives available

» so gradient descent type algorithms are not possible

f is a ‘black box.’

v

cmy

v

Goal: Find a global rather than local optimum.



Overview of BayesOpt

» BayesOpt is designed for black-box derivative free global
optimization.

» BayesOpt consists of two main components:
1. Bayesian statistical model for modeling the objective function f

2. Acquisition function for deciding where to sample next.



Basic pseudo-code for Bayesian optimization

» Place a Gaussian process prior model on f

» Set n = ng, observe f at ng different points, i.e.,
f(x1)> f(x2)7 Tty f(xno)

» while n < N do
1. Update the posterior probability distribution on f

2. Let x,, be a maximizer of the acquisition « function over x
Note Acquisition function «(x) is computed using the current
posterior distribution.

3. Observe y, = f(x,)

4. n=n+1

» end while mo
gty |

srollvl
» Return a solution: the point evaluated with the largest f(x)
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Modeling objective function with GP Regression

» Consider the following

y="1(x)+e
> Represents f(x) as
K
f(x) =D 0i()8; = 6B,
j=1

we say ¢ is a basis system for f(x), where ¢;(x) is completely
known.

» Problem is B is unknown - hence we estimate (3. m.:
C'""



Modeling objective function with GP Regression

Con e

/ n %\i YI‘1)’<7,

» We are writing the function with its basis expansion

y=¢B+e
» The basis ¢ is fully known, such as
» ¢ = {1,sin(wx), cos(wx), sin(2wx), cos(2wx) - - - }, w is known

» ¢ = {1,exp(—Ai(x — c1)?), exp(—Xa(x — 2)?) -+ }

> Problem is 3 is unknown - hence we estimate 3.



Bayesian method

> Model:
y="1F(x)+e

e ~ N(0,0%1) = y ~ N(f(x),02l),

K 00
F(x) = @B=> &(¥)B+ Y. ou(x)Bk,
k=1 k=K+1
where | 3707 11 dk(X)Bi| < € € >0
» 3 is unknown and we want to estimate

Assuming 3's are uncorrelated random variable and ¢4 (x) are
known deterministic real-valued functions.

» Then due to Kosambi-Karhunen-Loeve theorem,
we can say that f(x) is a random realisation from a n.:
stochastic process. Cc'""1



Gaussian Process Prior

» As f(x) is a stochastic process, if we assume 3 ~ N(0, o2l)
then f(x) = ¢ follow Gaussian process.

» Since f(x) is unknown function; therefore induced process on
f(x) is known as ‘Gaussian Process Prior'.

Prior on 3:
L o7
pl8) x o0 (53676
Induced Prior on f = ¢3:

pl) o exp (5287 6TK 105)
iy



Gaussian Process Prior

» The prior mean and covariance of f(x) are given by

E[f(x)] = ¢(x)E[B] = ¢80

cov[f(x)] = E[f() F(x')"] = ¢(x).E[B.8T]o(t)"

= 0?¢(x).0(x)" = K(x,x)

f(x) ~ Nn(¢(x),30,K(X,X,)), EN-/\/‘n(oao-2l)

y(x) ~ Na(@()80. K(x,x) +o?1)

cmy



Gaussian Process Prior

> |f,80 = 0 then

E[f(x)] = ¢(x)E[B] = ¢B0 = 0

f(x) ~ Nn(0,K(x,x)), €~ Ny0,0°l)

y(x) ~ Nn(O,K(x,x’)+J2I)



Gaussian Process Regression

» The estimated value of y for a given x, is the mean
(expected) value of the functions sampled from from the
posterior at that value of x,.

» Suppose 1(x) = ¢(x)Bo = 0, then expected value of the
estimate at a given X, is given by

A

F(xi) = E(f(x:)lx,y)
= K(xs,x). [K(x,x) + 021y

Matrix of order n

» The time complexity of the matrix inversion is O(n%)

cmy
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Likelihood Method: Gaussian Process Prior Model

Data model:

v

y(x) ~ Nn(o,Ka,p(x,x')H?l)

v

Static or Hyperparameters: 8 = {a, p, 0%}

Likelihood function:

v

F(Bly. .07 x (6°) 2 exp 5y TIkero1] (31

v

Negative Log-likelihood function:

1(B) %yT[K + o2ty
cin



Gaussian Process Prior Model

> Negative log-posterior:

p(B) x ~- <yT[K + 01ty + BT¢TK‘1¢B>

x
202
» Hence the induced penalty matrix in the Gaussian process
prior is identity matrix

» Still hyperparameters: 8 = {a, p, 52} are unknown.

» One can use optimization routine to estimate the MLE/MAP.
Pk O Mot mokimiens Hoe Pmbwb‘tlj Ky o} Cmi

Hye seen do“)'??\



Experiment with GP Regression

» Model:
sin(x)
y= + €,
X

where e ~ N(0, 7).
» Simulate data from the above model and pretend we don't
know the true function.

» Objective is to estimate/learn the function.



Experiment with GP Regression
Objective is to estimate/learn the function.

1.0

0.5

0.0
|




Experiment with GP Regression
Objective is to estimate/learn the function.
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Experiment with GP Regression

Objective is to estimate/learn the function.
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Back to BayesOpt Obs; Only need to prodd e
7 T he opHmum, ot evU-:yu:)N.N_

» As we modeled the objective function f by 7

» With f we try to predict the performance of the deep network
model for a possible choices of hyper-parameter x.

» Next we model the acusition function which recomend where

will be the next point of hyper-parameter will be

le L(w)
h SannpiC
— where. fo V\ei"‘%

» One can use the f directly as acquisition function or one can
sample the acquisition function «(x) from the posterion
distribution of f, i.e.,

a(x) ~ N(F, cov(F)) Cmi



Bayesian Optimization: First Iteration Cym\x\m'\w%‘er\)
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Bayesian Optimization: First Iteration
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Bayesian Optimization: First Iteration
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Bayesian Optimization: First Iteration
[1] -7.424242




Bayesian Optimization: Iteration = 50
[1] 0.2705411
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