Deep Reinforcement Learning

We use lecture slides by Fei-Fei Li & Justin Johnson & Serena Yeung

http: //cs231n.stanford.edu/slides/2017 /cs231n_2017 _lecturel4.pdf

Madhavan Mukund and Pranabendu Misra Lecture 20: Deep Reinforcement Learning AML 2021 2/3

Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, °#°*
which provides numeric reward

signals

Reward T
Next state 8.

Action a,

Environment

Goal: Learn how to take actions
in order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 7 May 23, 2017

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 16 May 23, 2017

Markov Decision Process

- Attime step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s, a)

- Environment samples next state s, ~P(.|s, a,)

- Agent receives reward r, and next state s,

- A policy m is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy m* that maximizes cumulative discounted reward: Z’Y Tt
t>0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 20 May 23, 2017

The optimal policy m*

We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

FOrma”y: T = argmfoE lz '7t7't|7l"| with Sp p(SO), a; ~ 7T(‘|St), St41 p(-|st,at)
t>0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 14 - 24 May 23, 2017

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, s, a,, ry, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s)=E Z'ytrdso =8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

>0

Q" (s,a) =E [Z fytrt|so = 8,aq¢ = Q, 71']

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 27 May 23, 2017

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = mgxlE Z’)’trt|30 =S,ap0 =a, T
>0

Q* satisfies the following Bellman equation:
Q*(s,a) = Eg e [r +ymaxQ*(s',a)]s, a,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+9Q*(s',a’)

The optimal policy n* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 30 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qit1(s,a) = E [r + ymaxQi(s',a')]s,q
a

Q, will converge to Q* as i -> infinity

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 31 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qit1(s,a) = E [r + ymaxQi(s',a')]s,q
a

Q, will converge to Q* as i -> infinity

What’s the problem with this?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 32 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qit1(s,a) =E ['r +ymaxQs(s’, a’)s, a}

Q, will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 33 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qit1(s,a) =E ['r +ymaxQs(s’, a’)s, a}

Q, will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 34 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q"(s,a)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 35 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q"(s,a)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 36 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 91{@* (s, a)
function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 37 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg e [7“ + 7y max QR*(s',a’)ls, a]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 38 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg e [7“ + 7y max QR*(s',a’)ls, a]

Forward Pass
Loss function: L;(6;) = Eg o pcy [(wi — Q(S, a5 6;))?]

where y; = Eg g [’f‘ + Y max Q(s',a";0;-1)ls, a]
a

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 39 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:

Q*(s,a) =Es~g [7“ + 7y max QR*(s',a’)ls, a]
Forward Pass

Loss function: L;(6;) = Eg o pcy [(wi — Q(S, a5 6;))?]

where y; = Esng ["" + Y max Q(s',a;0;-1)s, a]
a

Backward Pass
Gradient update (with respect to Q-function parameters 0):

VOZ-Li (97,) - Es,awp(-);s’rvg [T Ty II;E,LX Q(S,a a',; 9’5—1) o Q(Sv a, 9’&))v0z Q(Sa a, 9’&)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 40 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg e [7“ + 7y max QR*(s',a’)ls, a]

Forward Pass
Loss function: L;(0;) = Eg o pcy [(wi = Q(s, a5 6;))?]

lteratively try to make the Q-value
where y; = Eg g ["" + Y max Q(S’a a’; 0i—1)|s,a close to the target value (y,) it
@ should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy r*)

Gradient update (with respect to Q-function parameters 0):

VOZ-Li (97,) - Es,awp(-);s’rvg [T Ty II;E,LX Q(S,a a',; 9’5—1) o Q(Sv a, 9’&))v0z Q(Sa a, 9’&)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 41 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 42 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(Sa a, 9) : FC-4 (Q-values)
neural network
with weights @ FC-256

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 43 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(Sa a, 9) : FC-4 (Q-values)
neural network
with weights @ FC-256

- Input: state s,

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 44 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S’ 4; 9) : FC-4 (Q-values)
neural network
with weights @ FC-256
< Familiar conv layers,
FC layer

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 45 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S, a; 9) : FC-4 (Q-values) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 corresponding to Q(s,,
a,), Q(s, a,), Q(s, a,),
Q(s,a,)

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 46 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S, a; 9) : FC-4 (Q-values) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 corresponding to Q(s,,
a,), Q(s, a,), Q(s, a,),
Q(s,a,)

Number of actions between 4-18
1NN — depending on Atari game

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 47 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values) < Last FC_ layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 corresponding to Q(s,,
a1)1 Q(St! a2)1 Q(St’ a3)1
Q(s,,a,)

A single feedforward pass v

to compute Q-values for all

actions from the current o e Number of actions between 4-18

state => efficient! 10— depending on Atari game

|

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 48 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Loss function (from before)

Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~g [r + ymax Q* (s, a’)|s, a}
a

Forward Pass
Loss function: L;(0;) = Eg o pcy [(wi = Q(s, a5 6;))?]

lteratively try to make the Q-value
where y; = Eg g ["" + Y max Q(S’a a’; 0i—1)|s,a close to the target value (y,) it
@ should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy r*)

Gradient update (with respect to Q-function parameters 0):

VOZ-Li (97,) - Es,awp(-);s’rvg [T Ty II;E,LX Q(S,a a',; 9’5—1) o Q(Sv a, 9’&))v0z Q(Sa a, 9’&)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 49 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 50 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 51 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples " .
P Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 52 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 53 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 54 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do

With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 55 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;) <* Initialize state
fort =1,T do (starting game
With probability e select a random action a, screen pixels) at the

otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(¢;, a;; f)))2 according to equation 3
end for
end for

beginning of each
episode

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 56 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do - For each timestep t
With probability € select a random action a;, of the game
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 57 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,7T do
With probability € select a random action a, < With small probability,
otherwise select a; = max, Q*(¢(s¢), a; 6) select a random
Execute action a; in emulator and observe reward r; and image x; ; action (explore),

Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)

Store transition (¢, ay, 7y, ¢+1) in D

Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D
S { T for terminal ¢, 1

J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,

Perform a gradient descent step on (y; — Q(¢;, a;; f)))2 according to equation 3
end for
end for

otherwise select
greedy action from
current policy

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 58 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;

Set St11 = 8, A4, T and Preprocess ¢t+1 = ¢(SH.1) < Take the action (at)’
Store transition (¢, ay, 7y, ¢+1) in D and observe the
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D reward r, and next

Goppiad T for terminal ¢, ; state s, ,
Yi = r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 59 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8411 = 84, @y, Ty41 and preprocess ¢y11 = P(Si41 L
Store transition (¢, as, 71, des1) in D () < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
o for terminal ¢,
J r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢; 1,
Perform a gradient descent step on (y; — Q(&;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 60 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,7T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, ¢, Ty and preprocess ¢y.1 = A(S41)
Store transition (¢, ay, 7y, ¢+1) in D
Sample random minibatch of transitions (¢;,a;,7;,¢;+1) fromD «— EXxperience Replay:

Gapgivesd 17 for terminal ¢ Sample a random
il { r; + ymaxy Q(@j+1,a’;0) for non-terminal ¢;., minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; f)))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 61 May 23, 2017

AN

A3

&
o)
b3
2
i
o

ey
r\}

S

AT (SR et o o e
Srnnty ke gl

o

SRR

HON

&
)t_

B

https://www.youtube.com/watch?v=V1eYniJORnk

Video by Karoly Zsolnai-Fehér. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 62 May 23, 2017

http://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk

