Deep Reinforcement Learning

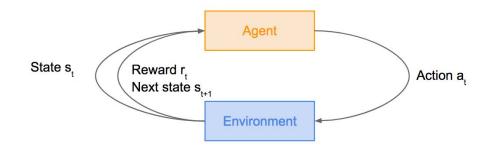
We use lecture slides by Fei-Fei Li & Justin Johnson & Serena Yeung

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

Today: Reinforcement Learning

Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals

Goal: Learn how to take actions in order to maximize reward



Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a,
 - Environment samples reward r_t ~ R(. | s_t, a_t)
 - Environment samples next state $s_{t+1} \sim P(\cdot, |s_t, a_t)$
 - Agent receives reward r, and next state s,+1

- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy $\mathbf{\pi}^*$ that maximizes cumulative discounted reward: $\sum \gamma^t r_t$

The optimal policy π^*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the **expected sum of rewards!**

Formally:
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi\right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from following the policy from state s:

 $V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^\pi(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q* satisfies the following **Bellman equation**:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$

The optimal policy π^* corresponds to taking the best action in any state as specified by Q*

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Q will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Q_i will converge to Q* as i -> infinity

What's the problem with this?

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Q will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$$

Q_i will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s, a; \theta) \approx Q^*(s, a)$$

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s, a; \theta) \approx Q^*(s, a)$$

If the function approximator is a deep neural network => deep q-learning!

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s,a;\theta) pprox Q^*(s,a)$$
 function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a\right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function: $L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a \right]$$

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a\sim
ho(\cdot)}\left[(y_i - Q(s,a;\theta_i))^2\right]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a \right]$$
 Iteratively try to make the Q-value close to the target value (y_i) it

should have, if Q-function corresponds to optimal Q* (and optimal policy π^*)

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Case Study: Playing Atari Games

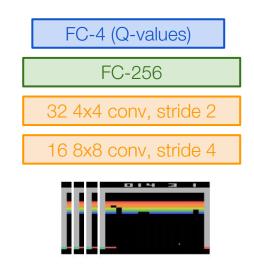
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

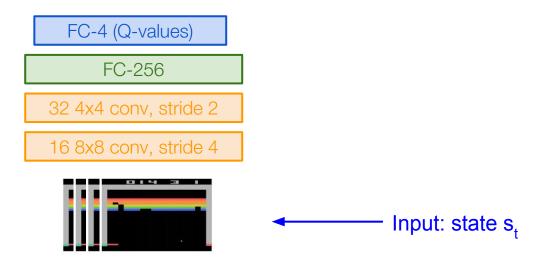
Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

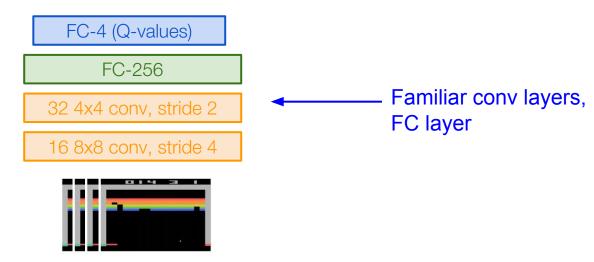
Q(s,a; heta) : neural network with weights heta



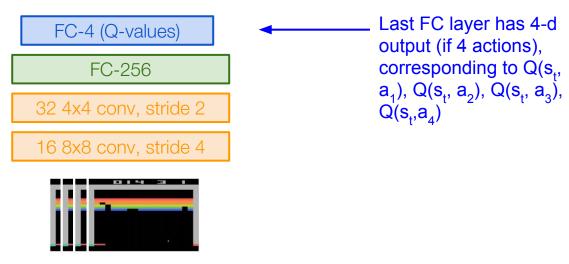
Q(s,a; heta) : neural network with weights heta



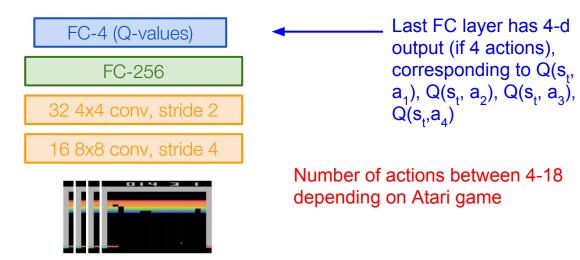
Q(s,a; heta) : neural network with weights heta



Q(s,a; heta) : neural network with weights heta

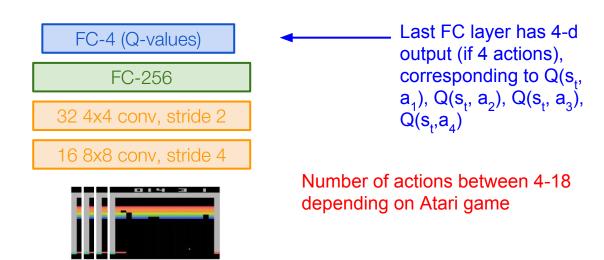


Q(s,a; heta) : neural network with weights heta



Q(s,a; heta) : neural network with weights heta

A single feedforward pass to compute Q-values for all actions from the current state => efficient!



Training the Q-network: Loss function (from before)

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a\sim
ho(\cdot)}\left[(y_i - Q(s,a;\theta_i))^2\right]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; heta_{i-1}) | s, a
ight]$$

Iteratively try to make the Q-value close to the target value (y_i) it should have, if Q-function corresponds to optimal Q* (and optimal policy π^*)

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a **replay memory** table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a **replay memory** table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Each transition can also contribute to multiple weight updates => greater data efficiency

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
            Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
                                                                                                    Initialize replay memory, Q-network
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
                                                                                          ——— Play M episodes (full games)
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity NInitialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ Initialize state for t = 1, T do (starting game With probability ϵ select a random action a_t screen pixels) at the otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ beginning of each Execute action a_t in emulator and observe reward r_t and image x_{t+1} episode Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_i, a_i, r_i, \phi_{i+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to equation 3 end for end for

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
                                                                                                                           For each timestep t
            With probability \epsilon select a random action a_t
                                                                                                                           of the game
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
                                                                                                                     With small probability,
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
                                                                                                                     select a random
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
                                                                                                                     action (explore),
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
                                                                                                                     otherwise select
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                                                                                                     greedy action from
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
                                                                                                                     current policy
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
           Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
                                                                                                                           Take the action (a,),
                                                                                                                           and observe the
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
                                                                                                                           reward r, and next
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                                           state s<sub>++1</sub>
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
   for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
                                                                                                                           Store transition in
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                                                                                                           replay memory
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
   end for
```

```
Algorithm 1 Deep Q-learning with Experience Replay
   Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
            With probability \epsilon select a random action a_t
           otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
           Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                                                                                                  Experience Replay:
            Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
                                                                                                                  Sample a random
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                                  minibatch of transitions
                                                                                                                  from replay memory
           Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
                                                                                                                  and perform a gradient
       end for
                                                                                                                  descent step
  end for
```



https://www.youtube.com/watch?v=V1eYniJ0Rnk

Video by Károly Zsolnai-Fehér. Reproduced with permission.