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Adding bootstrapping to Monte Carlo methods

Dynamic programming: use generalized policy iteration to approximate π∗, v∗

Bootstrap from an initial estimate through incremental updates

Need to know the model

Monte Carlo methods: random exploration to estimate π∗, v∗

Works with black box models

Need to complete an episode before applying updates

Temporal Difference (TD) learning

Learn immediately from the ongoing episode.
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From Monte Carlo to TD

Monte Carlo update for non-stationary environments

V (St)← V (St) + α[Gt − V (St)], α ∈ (0, 1] is a constant

Gt is available only after we complete the episode — calculate backwards from GT

Instead

Observe that, Rt+1 + γV (St+1) is our current estimate for Gt .

Revised update rule: V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

Rt+1 is available after choosing At

Use current estimate for V (St+1)

Update V (St) on the fly, as the episode evolves

Also called TD(0), because it has zero lookahead

More generally, can look ahead n steps to update, TD(n)

Most general version is called TD(λ), we only consider TD(0)
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TD(0) algorithm for policy evaluation
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TD(0) example: Driving home from work

Predict how long it will take you to drive home from work

Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now

Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40

At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes

Stuck behind slow truck, follow till 6:40 pm

Turn off onto home street, arrive at 6:43 pm
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TD(0) example: Driving home

Rewards: elapsed time
on each leg

No discounting: γ = 1,
return at a state is
actual time remaining
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Comparing MC and TD(0)

Markov Reward Process: MDP without actions, environment changes automatically.

Reward is probability of reaching right hand side
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Comparing MC and TD(0) . . .

Predict the values of states A and B, given the following eight episodes

V (B) = 6/8 = 0.75

What about V (A)?

MC — only one episode with A with total
reward 0, hence V (A) = 0

TD(0) — V (A) = 0.75, because based on
data, we always go from A to B with
reward 0, and V (B) = 0.75.
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SARSA: On policy TD control, estimating π∗

For π∗, better to estimate qπ rather than vπ

Structure of an episode

Use the following update rule

Q(St ,At)← Q(St ,At) + α[Rt+1 + γQ(St+1,At+1)− Q(St ,At)]

Update uses (St ,At ,Rt+1,St+1,At+1), hence the name SARSA

As with Monte Carlo estimation, use ε-soft policies to balance exploration and
exploitation
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SARSA algorithm on-policy TD control

Pranabendu Misra Temporal Difference Learning AML 2022 10 / 13



Q-learning: Off policy TD control, estimating π∗

Directly estimate q∗ independent of policy being followed

Use the following update rule

Q(St ,At)← Q(St ,At) + α[Rt+1 + γmax
a

Q(St+1, a)− Q(St ,At)]

Observe that we use the greedy policy at St+1, unlike SARSA which uses the policy
π. This comes from the Bellman equations.

Underlying policy still needs to be designed to visit all state-action pairs

With suitable assumptions, Q-learning provably converges to q∗
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Q-learning algorithm, off-policy TD control
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Summary

Temporal difference methods combine bootstrapping with Monte Carlo exploration
of state space

SARSA is a TD(0) algorithm for on-policy control — estimating π∗

Q-learning is an off-policy algorithm that provably converges to q∗

TD-based approaches apply beyond reinforcement learning

General methods to make long term predictions about dynamical systems

Theoretical properties such as convergence still an area of research
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