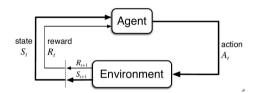
Pranabendu Misra based on slides by Madhavan Mukund

Advanced Machine Learning 2022

 \blacksquare Set of states S, actions A, rewards R

- Set of states *S*, actions *A*, rewards *R*
- At time t, agent in state S_t selects action A_t , moves to state S_{t+1} and receives reward R_{t+1}

Trajectory $S_0, A_0, R_1, S_1, A_1, R_2, S_2, \dots$

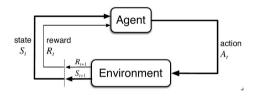


2/10

- Set of states S, actions A, rewards R
- At time t, agent in state S_t selects action A_t , moves to state S_{t+1} and receives reward R_{t+1}

Trajectory
$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, ...$$

- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$

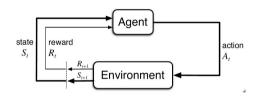


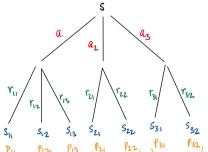
2/10

- Set of states S, actions A, rewards R
- At time t, agent in state S_t selects action A_t , moves to state S_{t+1} and receives reward R_{t+1}

Trajectory
$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, \dots$$

- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$
 - Backup diagram

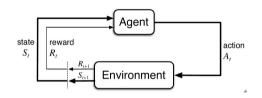


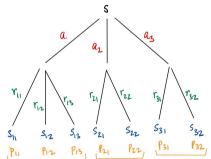


- Set of states *S*, actions *A*, rewards *R*
- At time t, agent in state S_t selects action A_t , moves to state S_{t+1} and receives reward R_{t+1}

Trajectory
$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, ...$$

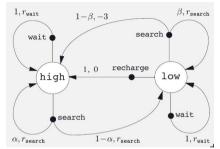
- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$
 - Backup diagram
- Typically assume finite MDPs *S*, *A* and *R* are finite





MDP Example: Robot that collects empty cans

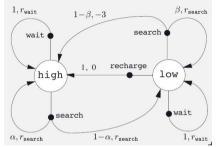
- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high



s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	rsearch
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	$r_{\mathtt{wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	_

MDP Example: Robot that collects empty cans

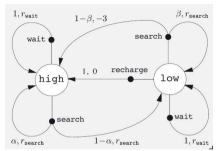
- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high
- lacksquare α , β , probabilities associated with change of battery state while searching



s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	rsearch
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$
low	search	high	$1-\beta$	-3
low	search	low	β	r_{search}
high	wait	high	1	$r_{\mathtt{wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

MDP Example: Robot that collects empty cans

- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high
- lacksquare α , β , probabilities associated with change of battery state while searching
- 1 unit of reward per can collected
- r_{search} > r_{wait} cans collected while searching, waiting
- Negative reward for requiring rescue (low to high while searching)



s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{\mathtt{search}}$
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	$r_{\mathtt{wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	_

■ How do we formalize long term rewards?

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode

4/10

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
 - Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$, $0 \le \gamma \le 1$
- Inductive calculation of expected reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+3} + \cdots$$

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
 - Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$, $0 \le \gamma \le 1$
- Inductive calculation of expected reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+3} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+3} + \cdots)$

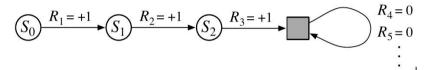
- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
 - Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$, $0 \le \gamma \le 1$
- Inductive calculation of expected reward

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+3} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+3} + \cdots)$$

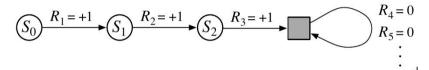
$$= R_{t+1} + \gamma G_{t+1}$$

■ Can make all episodes infinite by adding a self-loop with reward 0



5/10

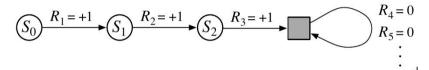
■ Can make all episodes infinite by adding a self-loop with reward 0



• Allow $\gamma = 1$ only if sum converges

5/10

■ Can make all episodes infinite by adding a self-loop with reward 0

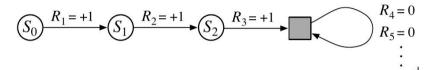


- Allow $\gamma = 1$ only if sum converges
- Alternatively, $G_t \stackrel{\triangle}{=} \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$,

where we allow $T=\infty$ and $\gamma=1$, but not both at the same time

5/10

Can make all episodes infinite by adding a self-loop with reward 0



- Allow $\gamma = 1$ only if sum converges
- Alternatively, $G_t \stackrel{\triangle}{=} \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$,

where we allow $T=\infty$ and $\gamma=1$, but not both at the same time

■ If $T = \infty$, $R_k = +1$ for each k, $\gamma < 1$, then $G_t = \frac{1}{1-\gamma}$

5/10

- lacktriangle A policy π describes how the agent chooses actions at a state
 - \blacksquare $\pi(a \mid s)$ probability of choosing a in state s, $\sum_{a} \pi(a \mid s) = 1$

- lacktriangle A policy π describes how the agent chooses actions at a state
 - $\blacksquare \pi(a \mid s)$ probability of choosing a in state s, $\sum_{a} \pi(a \mid s) = 1$
- State value function at s, following policy π

$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

6 / 10

- lacktriangle A policy π describes how the agent chooses actions at a state
 - $\pi(a \mid s)$ probability of choosing a in state s, $\sum_{a} \pi(a \mid s) = 1$
- State value function at s, following policy π

$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

■ Action value function on choosing a at s and then following policy π

$$q_{\pi}(s,a) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

lacksquare Note that $v_\pi(s) = \sum_a \pi(a \mid s) q_\pi(s, a)$

6/10

- lacktriangle A policy π describes how the agent chooses actions at a state
 - \blacksquare $\pi(a \mid s)$ probability of choosing a in state s, $\sum_{a} \pi(a \mid s) = 1$
- State value function at s, following policy π

$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

■ Action value function on choosing a at s and then following policy π

$$q_{\pi}(s,a) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

- lacksquare Note that $v_\pi(s) = \sum_a \pi(a \mid s) q_\pi(s, a)$
- Goal is to find an optimal policy, that maximizes state/action value at every state

$$\mathbf{v}_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$\mathbf{v}_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{s} \pi(s \mid s) \sum_{s} \sum_{s} p(s', r \mid s, s) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s'] \right]$$

$$\mathbf{v}_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s'] \right]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

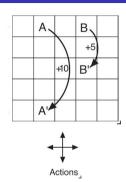
$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s'] \right]$$

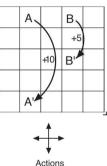
$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

- Bellman equation relates state value at s to state values at successors of s
- Value function v_{π} is unique solution to the equation

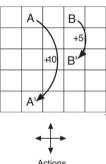
Actions in each cell are {N,S,E,W}, with usual interpretation



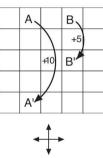
- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1



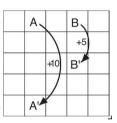
- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively



- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25

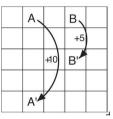


- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square



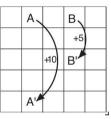
3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative



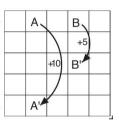
3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value



3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- \blacksquare Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value
- Value at B is more than 5 because next move is to a square with positive value



3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

■ Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$

9 / 10

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- lacktriangle Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for *v**

$$v_*(s) = \max_a q_{\pi_*}(s,a)$$

9 / 10

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_\pi q_\pi(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for *v**

$$v_*(s) = \max_{a} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$

9 / 10

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_\pi q_\pi(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for *v**

$$\begin{aligned} v_*(s) &= \max_{a} q_{\pi_*}(s, a) \\ &= \max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a] \\ &= \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a] \end{aligned}$$

9 / 10

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_\pi q_\pi(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for v_*

$$\begin{aligned} v_*(s) &= \max_{a} q_{\pi_*}(s, a) \\ &= \max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a] \\ &= \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a] \\ &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a] \end{aligned}$$

9 / 10

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_\pi q_\pi(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for *v**

$$\begin{aligned} v_*(s) &= \max_{a} q_{\pi_*}(s, a) \\ &= \max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a] \\ &= \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a] \\ &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')] \end{aligned}$$

4 D > 4 D > 4 E > 4 E > E 990

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$$

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$$

- For finite state MDPs, can solve explicitly for v_*
 - \blacksquare *n* states, *n* equations in *n* unknowns, (assuming we know *p*)

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$$

- For finite state MDPs, can solve explicitly for v_*
 - \blacksquare *n* states, *n* equations in *n* unknowns, (assuming we know *p*)
- \blacksquare However, n is usually large, computationally infeasible
 - State space of a game like chess or Go

10 / 10

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$$

- For finite state MDPs, can solve explicitly for v_*
 - \blacksquare *n* states, *n* equations in *n* unknowns, (assuming we know p)
- \blacksquare However, n is usually large, computationally infeasible
 - State space of a game like chess or Go
 - Instead, we will explore iterative methods to approximate v_*

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 900