Lecture 5: Training Deep Neural Networks II

Pranabendu Misra Chennai Mathematical Institute

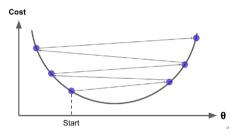
Advanced Machine Learning 2022

(based on slides by Madhavan Mukund)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ill conditioning

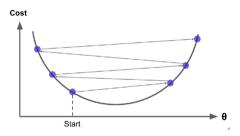
 Ill conditioning — small change in input produces a large change in output



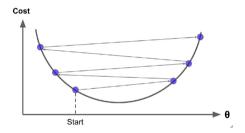
Ill conditioning

 Ill conditioning — small change in input produces a large change in output

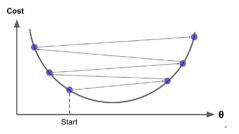
• Gradient
$$\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$$

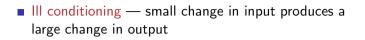


- Ill conditioning small change in input produces a large change in output
- Gradient $\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$
- Impact of update $\theta \epsilon \nabla_{\theta}$ on cost $J(\theta)$?



- Ill conditioning small change in input produces a large change in output
- Gradient $\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$
- Impact of update $\theta \epsilon \nabla_{\theta}$ on cost $J(\theta)$?
- Depends on curvature, given by second derivative



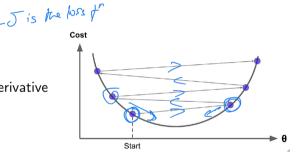


Gradient
$$\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$$

Impact of update $\theta - \epsilon \nabla_{\theta}$ on cost $J(\theta)$?

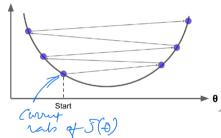
0

- Depends on curvature, given by second derivative
- Hessian: $H_{\theta} = \frac{\delta^2}{\delta \theta_i \delta \theta_j} J(\theta)$



- Ill conditioning small change in input produces a large change in output
 A Conditional and a conditiona conditional and a conditional and a conditional and a condit
- Gradient $\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$
- Impact of update $\theta \epsilon \nabla_{\theta}$ on cost $J(\theta)$?
- Depends on curvature, given by second derivative
- Hessian: $H_{\theta} = \frac{\delta^2}{\delta \theta_i \delta \theta_j} J(\theta) \longrightarrow experime to compute$
- Using Taylor expansion, impact of update $\theta \epsilon \nabla_{\theta}$,

 $\widehat{J(\theta) -
abla_{ heta}^{T}
abla_{ heta}} + \frac{1}{2}
abla_{ heta}^{T} H_{ heta}
abla_{ heta}$

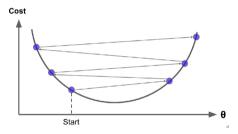


Cost

- Ill conditioning small change in input produces a large change in output
- Gradient $\nabla_{\theta} = \frac{\partial}{\partial \theta_i} J(\theta)$
- Impact of update $\theta \epsilon \nabla_{\theta}$ on cost $J(\theta)$?
- Depends on curvature, given by second derivative
- Hessian: $H_{\theta} = \frac{\delta^2}{\delta \theta_i \delta \theta_j} J(\theta)$
- Using Taylor expansion, impact of update $\theta \epsilon \nabla_{\theta}$,

 $J(heta) -
abla_{ heta}^{ op}
abla_{ heta} + rac{1}{2}
abla_{ heta}^{ op} H_{ heta}
abla_{ heta}$

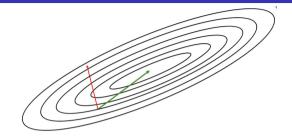
• Analyze H_{θ} to check for ill conditioning



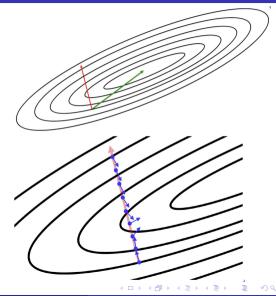
AML 2022

2/15

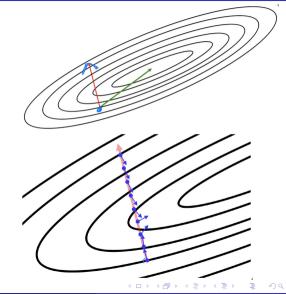
- Locally steepest direction of descent may be far from the optimum
 - Elliptical contours vs circular contours



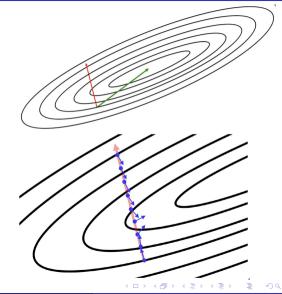
- Locally steepest direction of descent may be far from the optimum
 - Elliptical contours vs circular contours
- Gradient changes rapidly along the direction of steepest descent
 - Taking large steps is problematic



- Locally steepest direction of descent may be far from the optimum
 - Elliptical contours vs circular contours
- Gradient changes rapidly along the direction of steepest descent
 - Taking large steps is problematic
- Ill-conditioned Hessian *H* second derivatives
 - Computing Hessian is expensive
 - "Second order" methods are not used in practice



- Locally steepest direction of descent may be far from the optimum
 - Elliptical contours vs circular contours
- Gradient changes rapidly along the direction of steepest descent
 - Taking large steps is problematic
- Ill-conditioned Hessian *H* second derivatives
 - Computing Hessian is expensive
 - "Second order" methods are not used in practice
- Instead, heuristics like momentum and adaptive learning rates



Pranabendu Misra

Lecture 5: Training Deep Neural Networks II

SGD convergence can be very slow

* ヨト * ヨト

э

- SGD convergence can be very slow
- Momentum in physics mass × velocity

글 🖌 🖌 글 🕨

- SGD convergence can be very slow
- Momentum in physics mass × velocity
- Introduce velocity v in SGD assume unit mass
 - Moving average of past gradients, exponential decay
 - If gradient remains steady, velocity increases

- SGD convergence can be very slow
- Momentum in physics mass × velocity
- Introduce velocity v in SGD assume unit mass
 - Moving average of past gradients, exponential decay
 - If gradient remains steady, velocity increases
- Update rule

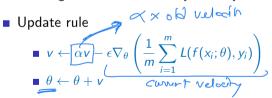
•
$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}_i; \theta), \mathbf{y}_i) \right)$$

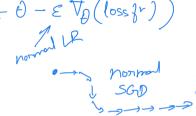
• $\theta \leftarrow \theta + \mathbf{v}$

AML 2022

SGD convergence can be very slow

- Momentum in physics mass × velocity
- Introduce velocity v in SGD assume unit mass
 - Moving average of past gradients, exponential decay
 - If gradient remains steady, velocity increases





• Hyperparameter $\alpha \in [0, 1)$ — "friction", exponentially decaying history

• With constant gradient g, in the limit $\frac{\epsilon g}{1-\alpha}$, geometric progression

 $\theta \in$

Nesterov momentum optimization

 Measure cost function slightly ahead, in direction of momentum

< E

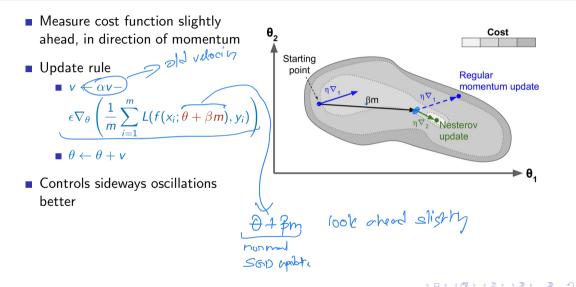
Nesterov momentum optimization

- Measure cost function slightly ahead, in direction of momentum
- Update rule

•
$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}_i; \theta + \beta m), \mathbf{y}_i) \right)$$

• $\theta \leftarrow \theta + \mathbf{v}$

Nesterov momentum optimization

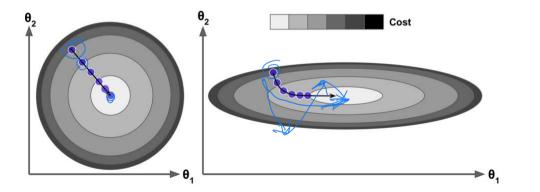


AML 2022

Adjusting the trajectory

If features have different scales, gradient descent is steeper in some dimensions

How can we correct for this?



Adagrad

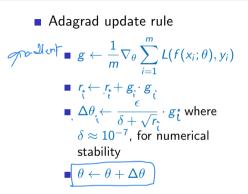
- Adagrad update rule
 - $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$ • $r \leftarrow r + g \cdot g$ • $\Delta \theta \leftarrow \frac{\epsilon}{\delta + \sqrt{r}} \cdot g$, where $\delta \approx 10^{-7}$, for numerical stability
 - $\blacksquare \ \theta \leftarrow \theta + \Delta \theta$

э

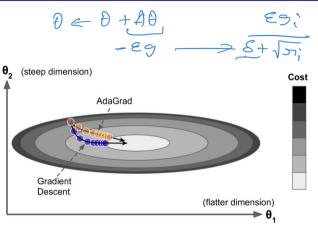
Adagrad

- Adagrad update rule
 - $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$ $r \leftarrow r + g \cdot g$ $\Delta \theta \leftarrow \frac{\epsilon}{\delta + \sqrt{r}} \cdot g, \text{ where}$ $\delta \approx 10^{-7}, \text{ for numerical stability}$
 - $\blacksquare \ \theta \leftarrow \theta + \Delta \theta$
- Shrink learning rate in each dimention according to entire history of squared gradient

Adagrad



 Shrink learning rate in each dimention according to entire history of squared gradient



Adaptive learning rates

RMSProp

- Using entire history shrinks learning rate too much
- Exponentially decaying average, discard extreme past
- Update rule

$$g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$$

$$r \leftarrow \rho r + (1 - \rho)(g \cdot g), \text{ where } \rho \text{ is decay rate}$$

$$\Delta \theta \leftarrow \frac{\epsilon}{\sqrt{\delta + r}} \cdot g, \text{ where } \delta \approx 10^{-6}$$

$$\theta \leftarrow \theta + \Delta \theta$$

$$New hyperparameter \rho$$

$$51 \leftarrow 51 + 9^{2}$$

$$p = (1 - p) 9^{2}$$

$$p \in (0, 1)$$

$$p = p = 10$$

$$p = 10$$

~

Adaptive moments — combines RMSProp and moments

★ Ξ ► ★ Ξ ►

э

Adam

- Adaptive moments combines RMSProp and moments
- Update rule
 - Step size ϵ ; two decay rates ρ_1 , ρ_2 ; two moments, s = r = 0; time step t = 0
 - $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$
 - $s \leftarrow \rho_1 s + (1 \rho_1)g; r \leftarrow \rho_2 r + (1 \rho_2)(g \cdot g)$
 - Correct bias in first and second moments: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$, $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$

$$\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}; \ \theta \leftarrow \theta + \Delta \theta$$

Adam

- Adaptive moments combines RMSProp and moments
- Update rule

Step size ϵ ; two decay rates ρ_1 , ρ_2 ; two moments, s = r = 0; time step t = 0 $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$ $g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(f(x_i; \theta), y_i)$ $g \leftarrow \rho_1 s + (1 - \rho_1)g r \leftarrow \rho_2 r + (1 - \rho_2)(g \cdot g)$ Correct bias in first and second moments: $\hat{s} \leftarrow \frac{s}{1 - \rho_1^t}$, $\hat{r} \leftarrow \frac{r}{1 - \rho_2^t}$ $\Delta \theta = \underbrace{-\epsilon \sum_{i=1}^{s} \delta_i}; \quad \theta \leftarrow \theta + \Delta \theta$ $\hat{s} = s$ $\hat{s} = r$

- No clear theoretical justification for combinining momentum and scaling
- Fairly robust with respect to values of hyperparameters

Adaptive learning rates

- Choosing a fixed learning rate is hard
- Make a learning rate a function of iteration number
- Power scheduling, exponential scheduling, piecewise constant scheduling

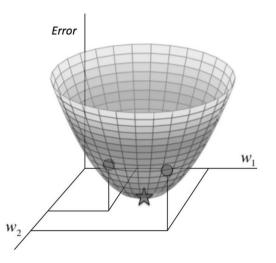


Regularization

 \bullet ℓ_1 and ℓ_2 regularization, as usual Dropout Disable nodes with probability Dropped Analogy — multifunctional employees Scale weights after training X_o 1 ins Loss fn + Regularia

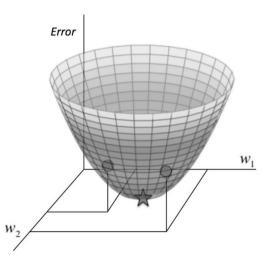
AML 2022

- The loss function for regression is convex
- Gradient descent converges to global optimum

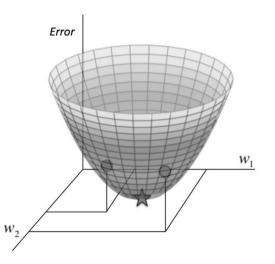


< E

- The loss function for regression is convex
- Gradient descent converges to global optimum
- Loss function for neural networks is not convex
- In general, gradient descent only finds local minima

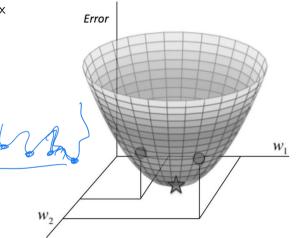


- The loss function for regression is convex
- Gradient descent converges to global optimum
- Loss function for neural networks is not convex
- In general, gradient descent only finds local minima
- How many local minima are there?



12/15

- The loss function for regression is convex
- Gradient descent converges to global optimum
- Loss function for neural networks is not convex
- In general, gradient descent only finds local minima
- How many local minima are there?
- How does it affect gradient descent?



Model identifiability

Is the model that fits the data unique?

▶ < ⊒ ▶

э

Model identifiability

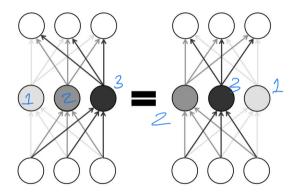
- Is the model that fits the data unique?
- Non-identifiable two or more settings of the parameters are observationally equivalent

- 🖌 🖻

Model identifiability

Is the model that fits the data unique?

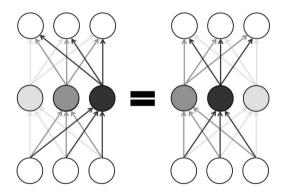
- Non-identifiable two or more settings of the parameters are observationally equivalent
- Symmetry
 - Fully connected network, permutations of a layer are indistinguishable



Model identifiability

Is the model that fits the data unique?

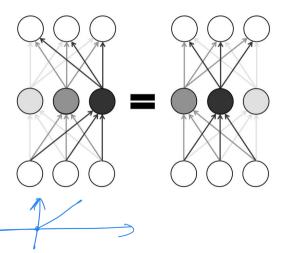
- Non-identifiable two or more settings of the parameters are observationally equivalent
- Symmetry
 - Fully connected network, permutations of a layer are indistinguishable
- Piecewise linear activation ReLU
 - Scale inputs by k, multiply output by 1/k



Model identifiability

Is the model that fits the data unique?

- Non-identifiable two or more settings of the parameters are observationally equivalent
- Symmetry
 - Fully connected network, permutations of a layer are indistinguishable
- Piecewise linear activation ReLU
 - Scale inputs by k, multiply output by 1/k
- Large numbers of local minima!



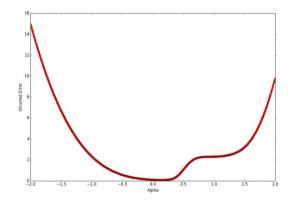
How to measure the impact of local minima?

▶ ∢ ⊒

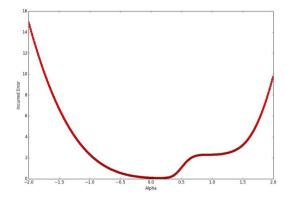
- How to measure the impact of local minima?
- Training process will see local ups and downs, but "bumpy" surface may not give a good picture

- How to measure the impact of local minima?
- Training process will see local ups and downs, but "bumpy" surface may not give a good picture
- Instead [Goodfellow et al]
 - **Random initialization** θ_i
 - **SGD** finds an optimum value θ_f

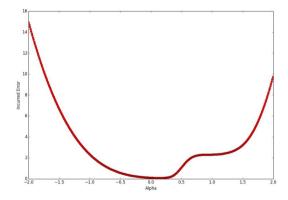
- How to measure the impact of local minima?
- Training process will see local ups and downs, but "bumpy" surface may not give a good picture
- Instead [Goodfellow et al]
 - **Random initialization** θ_i
 - **SGD** finds an optimum value θ_f
 - Check loss along the linearly interpolation $\theta_{\alpha} = \alpha \cdot \theta_f + (1 - \alpha) \cdot \theta_i$



- How to measure the impact of local minima?
- Training process will see local ups and downs, but "bumpy" surface may not give a good picture
- Instead [Goodfellow et al]
 - **Random initialization** θ_i
 - **SGD** finds an optimum value θ_f
 - Check loss along the linearly interpolation $\theta_{\alpha} = \alpha \cdot \theta_f + (1 - \alpha) \cdot \theta_i$
 - Are there problematic local minima along the path?

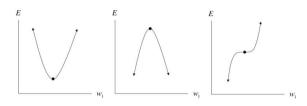


- How to measure the impact of local minima?
- Training process will see local ups and downs, but "bumpy" surface may not give a good picture
- Instead [Goodfellow et al]
 - **Random initialization** θ_i
 - **SGD** finds an optimum value θ_f
 - Check loss along the linearly interpolation $\theta_{\alpha} = \alpha \cdot \theta_f + (1 - \alpha) \cdot \theta_i$
 - Are there problematic local minima along the path?

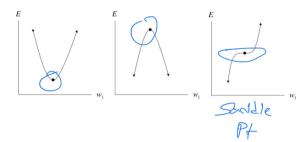


Typically, no!

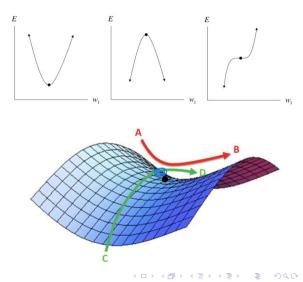
- Critical points zero gradient
 - Minimum, maximum or inflection point
 - k critical points $\rightarrow k/3$ are minima



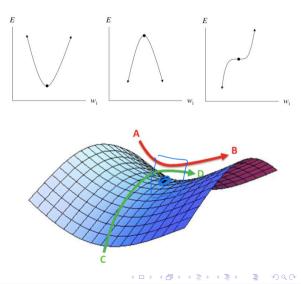
- Critical points zero gradient
 - Minimum, maximum or inflection point
 - k critical points $\rightarrow k/3$ are minima
- In *d* dimensions
 - Should be minimum in *d* directions
 - k critical points $\rightarrow k/3^d$ are minima



- Critical points zero gradient
 - Minimum, maximum or inflection point
 - k critical points $\rightarrow k/3$ are minima
- In d dimensions
 - Should be minimum in *d* directions
 - k critical points $\rightarrow k/3^d$ are minima
- Large fraction of critical values are saddle points



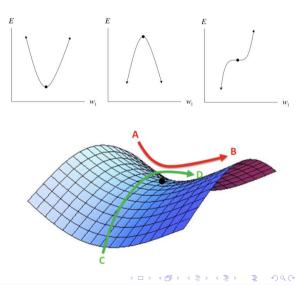
- Critical points zero gradient
 - Minimum, maximum or inflection point
 - k critical points $\rightarrow k/3$ are minima
- In d dimensions
 - Should be minimum in *d* directions
 - k critical points $\rightarrow k/3^d$ are minima
- Large fraction of critical values are saddle points
- Does not seem to be a problem for SGD $\mathcal{S} \subseteq \mathcal{S} \vee \mathcal{S} \subseteq \mathcal{S}$



AML 2022

15 / 15

- Critical points zero gradient
 - Minimum, maximum or inflection point
 - k critical points $\rightarrow k/3$ are minima
- In d dimensions
 - Should be minimum in *d* directions
 - k critical points $\rightarrow k/3^d$ are minima
- Large fraction of critical values are saddle points
- Does not seem to be a problem for SGD
- Solving directly for zero gradient is problematic



AML 2022

15 / 15