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lll conditioning

m Il conditioning — small change in input produces a
large change in output

—— X n
Gradient/ Vy = 889_](6) /() is fe fos ¢
i L Cost

Impact of update/d — eV on cost J(0)?

;

m Depends on curvature, given by second derivative
62
m Hessian: Hy = 59i59jJ(9)
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lll conditioning

m Il conditioning — small change in input produces a

large change in output
GGD opr=

: 0
m Gradient Vy = OG;J(Q) o
m Impact of updat;n cost J(0)?
m Depends on curvature, given by second derivative
. (52 — qupsz'/e /17
m Hessian: Hy = WJ(H) corrpri
m Using Taylor expansion, impact of update 0 — €V,
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lll conditioning

m Il conditioning — small change in input produces a
large change in output

0
(99,’ J(G) Cost

Impact of update 6 — ¢V on cost J(0)?

Gradient Vy =

Depends on curvature, given by second derivative
62
00;60;

Hessian: Hy =

J(0)

Using Taylor expansion, impact of update 0 — ¢Vy,

1
J(0) = V]V + 5VJHQW

Analyze Hy to check for ill conditioning
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
m Gradient changes rapidly along the

direction of steepest descent
m Taking large steps is problematic

oA
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
m Gradient changes rapidly along the

direction of steepest descent
m Taking large steps is problematic

m lll-conditioned Hessian H — second
derivatives
m Computing Hessian is expensive %
m “Second order” methods are not used in P24

practice
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
m Gradient changes rapidly along the

direction of steepest descent
m Taking large steps is problematic

m lll-conditioned Hessian H — second
derivatives
m Computing Hessian is expensive %
m “Second order” methods are not used in po24

practice

m Instead, heuristics like momentum and
adaptive learning rates
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Momentum

m SGD convergence can be very slow

Pranabendu Misra Lecture ining Deep Neural Networks Il AML 2022



Momentum

m SGD convergence can be very slow

m Momentum in physics — mass X velocity

Pranabendu Misra Lecture 5: ning Deep Neural Networks Il AML 2022



Momentum

m SGD convergence can be very slow
m Momentum in physics — mass X velocity

m Introduce velocity v in SGD — assume unit mass
m Moving average of past gradients, exponential decay

m If gradient remains steady, velocity increases
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m SGD convergence can be very slow
m Momentum in physics — mass X velocity

m Introduce velocity v in SGD — assume unit mass
m Moving average of past gradients, exponential decay
m If gradient remains steady, velocity increases

m Update rule

1 m
BV av—eVy ;;L(f(xire)',yi)
mO—0+v
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Momentum

m SGD convergence can be <9 =0 }g VQ <(033%V)>
\/Q,

m Momentum in physics — mass X velocity N’M\
. . . V\O 14
m Introduce velocity v in SGD — assume unit mass 0 —r~ y\cmwa 7‘
MEOCy vV I -
m Moving average of past gradients, exponential decay L SGD 7

. i o N s 2
m If gradient remains steady, velocity increases

X x ok vadscih

4

m Update rule o
e{; izm:L(f( 20),v1) el E\
m v «Jfav (e o | 2 LG 0. D= —>e >

*
g o vrormertane

ml<—0+v vt vdo&7

—_—

| Hyperparameter@e [0,1) — “friction”, exponentially decaying history
o

m With constant gradient g, in the limit 17g geometric progression
—
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Nesterov momentum optimization

m Measure cost function slightly
ahead, in direction of momentum
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Nesterov momentum optimization

m Measure cost function slightly
ahead, in direction of momentum

m Update rule

BV av—
1 m
- — L(f ;;9 5) s Vi
Eve(m,z; (F(x +xm)y))

mlO<—0+v
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Nesterov momentum optimization

m Measure cost function slightly
ahead, in direction of momentum

Joct 17
m Updaterule  _— Ol

u v

mlO<—0+v

m Controls sideways oscillations
better

@4%1”\

Cost

Starting
point =

Regular
momentum update

(ool ohreod S]"Sa’h7

Non n—J
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Adjusting the trajectory

m If features have different scales, gradient descent is steeper in some dimensions

m How can we correct for this?
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Adagrad

m Adagrad update rule
1 m
— L(f(x;; , Vi
u g—F mv9§ ( (lee),.y)
mr<r+g-g

€
m AO <« —
6 +/r
§ ~ 107, for numerical
stability

m 0«0+ A0

- g, where
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Adagrad

m Adagrad update rule
1 m
— L(f(x;; , Vi
u g—F mv9§ ( (lee),.y)
mr<r+g-g
€

m A« ST - g, where
§ ~ 107, for numerical
stability

m 0+ 0+ A0

m Shrink learning rate in each
dimention according to entire
history of squared gradient
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Adagrad update rul - O +46 €
| agrad update rule @4 Y v
1 ” — ~ -
7“9‘%*' g —Voy L(f(x:6),) €Y S
m i=1 92 (steep dimension) Cost
| r,e n + g 8, A
AdaGrad
L] Aee 5+\[ - g where
§ ~ 107, for numerical
stability
m o0 + AY Grad|ent
X . i Descent
m Shrink learning rate in each (flatterdimensiOS)

dimention according to entire
history of squared gradient

AML 2022
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Adaptive learning rates

RMSProp

m Using entire history shrinks learning rate too much
> entire history shnnks learning rate 1o

m Exponentially decaying average, discard extreme past

m Update rule Sie D‘\——/LO)Z

m

g %vgz L(F(x:0), y:) P+ CFp)o-
e (0,2
mr<fpr+(1—p)(g-g)|where pis decay rate f (
27 7ed /

€
B A0+ —— g, where § ~ 10°°
m0+— 0+ O
m New hyperparar@
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Adam

m Adaptive moments — combines RMSProp and moments
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m Adaptive moments — combines RMSProp and moments

m Update rule

m Step size ¢; two decay rates p1, p»; two moments, s = r = 0; time step t =0

1 m
g ;V(a;L(f(Xiﬁ),Y/)

m s pis+(1—p1)gir < par+(1—p2)(g-8)
m Correct bias in first and second moments: § < =, F ! .
1—pi 1—p;
§
m AO = —¢ 0+ 60+ A0
VP44
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m Adaptive moments — combines RMSProp and moments
—_— —

m Update rule

m Step size ¢; two decay rates p1, p»; two moments, s = r = 0; time step t =0
\ k m
Hoe 1
2 Ii% ;VeZL(f(X;ﬁ),y/)
L/_-\s

MOM"\WI\ T~
m Correct bias in first and second moments: § < =, F .
1—pi 1—p;
T

§ " — )
- > b o100 2o o
v s S=r

m No clear theoretical justification for combinining momentum and scaling

> /2(/|/\£1 /pmof) S('a\/@

T par ot (1-p2)(g-8)
r

m Fairly robust with respect to values of hyperparameters
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Adaptive learning rates

m Choosing a fixed learning rate is hard
m Make a learning rate a function of iteration number

m Power scheduling, exponential scheduling, piecewise constant scheduling

Loss
A
n way too high: diverges

n too small: slow
n too high: suboptimal

hhhhhhhhhhh just right
I == N O+ Epoch

Start with a high learning rate then reduce it: perfect!
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Regularization

m /1 and /» regularization, as usual

—_— —

m Dropout

m Disable nodes with probability
p

m Analogy — multifunctional

employees
m Scale weights after training
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Local minima

m The loss function for regression is convex .
rror

m Gradient descent converges to global ‘
optimum SATT
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

m Loss function for neural networks is not
convex

m In general, gradient descent only finds
local minima
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

m Loss function for neural networks is not
convex

m In general, gradient descent only finds
local minima

m How many local minima are there?
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

Loss function for neural networks is not
convex)

m In general, gradient descent only finds
local minima

m How many local minima are there?

m How does it affect gradient descent? -
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Model identifiability

m Is the model that fits the data unique?
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent

m Symmetry @

m Fully connected network, permutations of
a layer are indistinguishable
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent

m Symmetry O

m Fully connected network, permutations of
a layer are indistinguishable

m Piecewise linear activation — RelLU Q
m Scale inputs by k, multiply output by 1/k
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent

m Symmetry O

m Fully connected network, permutations of
a layer are indistinguishable

m Piecewise linear activation — RelLU Q
m Scale inputs by k, multiply output by 1/k

m Large numbers of local minimal! /7\/
- >
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How problematic are local minima?

m How to measure the impact of local
minima?
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture
m Instead [Goodfellow et al]
m Random initialization 6;

m SGD finds an optimum value 0¢
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

m Instead [Goodfellow et al]

m Random initializatio : .
m SGD finds an optimum value :

m Check loss along the linearly ;
interpolation 6, = o - 0f + (1 — ) - 6;
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

m Instead [Goodfellow et al]

Incurred Error
®

m Random initialization 6;
m SGD finds an optimum value 0¢

m Check loss along the linearly ;
interpolation 6, = o - 0f + (1 — ) - 6;

Alpha

m Are there problematic local minima along
the path?
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture
m Instead [Goodfellow et al]
m Random initialization 6; :
m SGD finds an optimum value 0¢

m Check loss along the linearly ;
interpolation 6, = o - 0f + (1 — ) - 6;

m Are there problematic local minima along
the path?

m Typically, no!
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point

m k critical points — k/3 are minima
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Saddle points

m Critical points — zero gradient

E E E
m Minimum, maximum or inflection point
m k critical points — k/3 are minima
m In d dimensions
m Should be minimum in d directions ! b Dald)e "
m k critical points — k/39 are minima PL
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point

m k critical points — k/3 are minima

m In d dimensions

m Should be minimum in d directions

m k critical points — k/39 are minima

m Large fraction of critical values are saddle

points
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point

m k critical points — k/3 are minima

m In d dimensions

m Should be minimum in d directions

m k critical points — k/39 are minima

m Large fraction of critical values are saddle
points

m Does not seem to be a problem for SGD

S&Y i1 GO
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point

m k critical points — k/3 are minima

In d dimensions

m Should be minimum in d directions

m k critical points — k/39 are minima

Large fraction of critical values are saddle
points

m Does not seem to be a problem for SGD

Solving directly for zero gradient is
problematic
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