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Linear separators and perceptrons

Perceptrons define linear separators
xTw + b

xTw + b > 0, classify Yes (+1)
xTw + b < 0, classify No (−1)

Unfortunately! Network of perceptrons
still defines only a linear separator

Linear separators cannot describe XOR

We need non-linearity!

Introduce a non-linear activation function

Traditionally sigmoid,
σ(z) = 1/(1 + e−z)

This is a neuron!
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(Feed forward) Neural networks

Acyclic network of
perceptrons with non-linear
activation functions

Universal Approximation
Theorem: With just 1
hidden layer, a neural
network can approximate
any function for any
degree of precision.

For a function f , it is
possible to construct such
a neural network.
For example the XOR
function.
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(Feed forward) Neural networks

Acyclic network of
perceptrons with non-linear
activation functions

The Structure of the
network and the value of
it’s Parameters θ
(weights and biases of
each neuron).

Objective: Given a
training set S , compute a
neural network with low
generalization loss.

We can estimate the
generalization loss using
a test set T .
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(Feed forward) Neural networks

How do we compute a
neural network?

Choose the structure of
the neural network, based
on the ML task at hand.

Initially set the weights
and biases of neurons to
random numbers.

Choose a loss-function
ℓ(θ,S) on the output of
the neural network, e.g.
Cross-Entropy Loss

Optimization problem:
Given S find the values
for θ with least ℓ(θ,S).
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(Feed forward) Neural networks

How do we compute a
neural network?

Optimization problem:
Given S find the values
for θ with least ℓ(θ,S).

Highly Non-Trivial Problem!

We use the most basic
optimization method:

Gradient Descent

Update θ so that ℓ(θ,S)
decreases =⇒
θ ← θ − α · dℓ(θ,S)dθ

α is the learning rate
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(Feed forward) Neural networks

Acyclic network of
perceptrons with non-linear
activation functions

Ingredients

Output layer activation
function

Loss function for gradient
descent

Hidden layer activation
functions

Network architecture:
Interconnection of layers

Initial values of weights
and biases
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Training a neural network

Backpropagation — efficient implementation of
gradient descent for neural networks

Forward pass, compute outputs, activation values

Backward pass, use chain rule to compute all
gradients in one scan

Stochastic gradient descent (SGD)

Update parameters in minibatches

Epoch: set of minibatches that covers entire
training data

Difficulties: slow convergence, vanishing and
exploding gradients
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Unstable gradients

Vanishing gradients — gradients become smaller
towards lower layers (closer to input)

Gradient descent updates leave these layers’
parameters virtually unchanged

Also exploding gradients, recurrent neural
networks with feedback edges

In general, unstable gradients, different layers
learn at different speeds

[Xavier Glorot and Joshua Bengio, 2010]

Random initialization, traditionally Gaussian
distribution N (0, 1)

Variance keeps increasing going forward

Saturating sigmoid function
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Initializing neural networks

Want “signal” to flow well in both directions
during backpropagation

Signal should not die out, explode, saturate

[Glorot,Bengio] Gradients should have equal
variance before and after flowing through a layer
in both directions

Equal variance requires fanin = fanout

Let fanavg = (fanin + fanout)/2

Initialize with

Gaussian, N (0, 1/fanavg )

Uniform, U(−r , r), r =

√
3

fanavg
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Initializing neural networks

Let fanavg = (fanin + fanout)/2

Initialize with

Gaussian, N (0, 1/fanavg )

Uniform, U(−r , r), r =

√
3

fanavg

[Yann LeCun, 1990s] earlier proposed the same
with fanavg replaced by fanin

Equivalent if fanin = fanout

Other choices for specific activation function

ReLU, [He et al, 2015], N (0, 2/fanin)
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Non-saturating activation functions

Sigmoid was initially chosen as a
“smooth” step

Rectified linear unit (ReLU):
g(z) = max(0, z)

Fast to compute

Non-differentiable point not a bottleneck

“Dying ReLU”

Neuron dies — weighted sum of outputs
is negative for all training samples

With a large learning rate, half the
network may die!
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Non-saturating activation functions

Leaky ReLU, max(αz , z)

“Leak” α is a hyperparameter

RReLU — random leak

Pick α from a random range during
training

Fix to an average value when testing

Seems to work well, act as a regularizer

PReLU — parametric ReLU [He et al,
2015]

α is learned during training

Often outperforms ReLU, but could lead
to overfitting
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Non-saturating activation functions

ELU — Exponential Linear Unit
[Clevert et al, 2015]

ELUα(z) =

{
α(ez − 1) if z < 0

z if z ≥ 0

Training converges faster

Computing exponential is slower

In practice, slower than ReLU
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Non-saturating activation functions

SELU — Scaled ELU
[Klambauer et al, 2017]

SELUα(z) = λ

{
α(ez − 1) if z < 0

z if z ≥ 0

Self-normalizing — output of each layer
preserves mean 0 and standard deviation
1 during training

Use LeCun initialization, N (0, 1/fanin)

Pranabendu Misra Lecture 3: Deep Neural Networks AML 2022 15 / 18



Batch normalization [Joffe, Szegedy 2015]

Good activation function and
initialization mitigates
vanishing/exploding gradients

May still recur during training

Add batch normalization (BN) layers

Estimate mean µB and variance σ2
B for

inputs across minibatch

Zero-centre and normalize each input

x̂i =
xi − µB√
σ2
B + ϵ

Scale and shift zi = λ · x̂i + β

Learn optimal scaling and shifting
parameters for each layer

At input, BN layer avoids need for
standardizing

Difficulties

Mean and variance differ across
minibatches

How to estimate parameters for entire
dataset?

Practical solution: maintain a moving
average of means and standard
deviations for each layer

Batch normalization greatly speeds up
learning rate

Even works as a regularizer!
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Transfer learning

Reuse trained layers across deep neural
networks (DNNs)

Old DNN trained on images of daily
objects (animals, plants, vehicles, . . . )

New DNN to classify types of vehicles

Tasks similar, even overlapping

Lower layers identify basic features, upper
layers combine them to classify

Freeze weights of lower layers, re-learn
upper layers

Unfreeze in stages to determine how much
to reuse
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Still to come

Optimizing rate of updates in backpropagation

How problematic are local minima?

Identifying and dealing with unstable gradients
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