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Representational capacity

PAC learning guarantee

Let H be a hypothesis class, δ, ϵ > 0 and S a training set of size n ≥ 1

ϵ
(ln |H|+ ln(1/δ))

drawn using D. With probability ≥ 1− δ, every h ∈ H with true error errD > ϵ has
training error errS > 0.

|H| is representational capacity, when H is finite

How do we adapt and apply these bounds when H is infinite?
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Shattering

Set system: (X ,H)

X is a set — instance space

H, set of subsets of X — set of possible classifiers /
hypotheses

A ⊆ X is shattered by H if every subset of A is given by
A ∩ h for some h ∈ H

Every way of splitting A is captured by a hypothesis in H
2|A| different subsets of A

Example:

X = R× R
H : Axis-parallel rectangles
A : Four points forming a diamond

H shatters A
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VC-Dimension [Vapnik-Chervonenkis]

VC-Dimension of H — size of the largest subset of X
shattered by H

For axis-parallel rectangles, VC-dimension is at least 4

Not a universal requirement — some sets of size 4 may
not be shattered

No set of size 5 can be shattered by axis-parallel
rectangles

Draw a bounding box rectangle — each edge touches a
boundary point

At least one point lies inside the bounding box

Any set that includes the boundary points also includes
the interior point
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VC-Dimension, Examples

Intervals of reals have VC-dimension 2

X = R, H = {[a, b] | a ≤ b ∈ R}
Cannot shatter 3 points: consider subset with first and third point

Pairs of intervals of reals have VC-dimension 4

X = R, H = {[a, b] ∪ [c , d ] | a ≤ b, c ≤ d ∈ R}
Cannot shatter 5 points: consider subset with first, third and fifth point

Finite sets of real numbers

X = R, H = {Z | Z ⊆ R, |Z | < ∞}
Can shatter any finite set of reals — VC-dimension is infinite

Convex polygons, X = R× R
For any n, place n points on unit circle

Each subset of these points is a convex polygon — VC-dimension is infinite
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VC-dimension and machine learning

PAC learning guarantee

Let H be a hypothesis class, δ, ϵ > 0 and S a training set of size n ≥ 1

ϵ
(ln |H|+ ln(1/δ))

drawn using D. With probability ≥ 1− δ, every h ∈ H with true error errD > ϵ has
training error errS > 0.

We can rewrite this using VC-dimension.
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1

ϵ
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1

ϵ
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Summary

PAC learning and uniform convergence use size of finite hypothesis set as measure
of representational capacity

VC-dimension provides a way of measuring capacity for infinite hypothesis sets

VC-dimension may be finite or infinite

For finite VC-dimension, we have analogues of PAC learning guarantee and uniform
convergence

Note that these theoretical bounds are hard to use in practice

Difficult, if not impossible, to compute VC-dimension for complex models
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