### Lecture 2 Part A: VC Dimension

Pranabendu Misra Chennai Mathematical Institute

### Advanced Machine Learning 2022

(based on slides by Madhavan Mukund)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

### Representational capacity

#### PAC learning guarantee

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

#### Uniform convergence

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$ . If a training set S of size  $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$  is drawn using D, then with probability  $\geq 1 - \delta$ , every  $h \in \mathcal{H}$ satisfies  $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$ .

NFX

Dist D or X n~X

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

#### Uniform convergence

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$ . If a training set S of size  $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$  is drawn using D, then with probability  $\geq 1 - \delta$ , every  $h \in \mathcal{H}$ satisfies  $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$ .

#### • $|\mathcal{H}|$ is representational capacity, when $\mathcal{H}$ is finite

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\overline{\ln |\mathcal{H}|} + \ln(1/\delta))$ drawn using D. With probability  $> 1 - \delta$ , every  $h \in \mathcal{H}$  with true error err<sub>D</sub>  $> \epsilon$  has training error  $err_{\varsigma} > 0$ .

#### Uniform convergence

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$ . If a training set S of size  $n \geq \frac{1}{2c^2}(\ln |\mathcal{H}| + \ln(2/\delta))$  is drawn using D, then with probability  $\geq 1 - \delta$ , every  $h \in \mathcal{H}$ satisfies  $|\operatorname{err}_{\mathcal{S}}(h) - \operatorname{err}_{\mathcal{D}}(h)| \leq \epsilon$ .

 $\blacksquare$   $|\mathcal{H}|$  is representational capacity, when  $\mathcal{H}$  is finite

- YC-Dim of HI
- How do we adapt and apply these bounds when  $\mathcal{H}$  is infinite?

Pranabendu Misra

Lecture 2 Part A: VC Dimension

- Set system:  $(X, \mathcal{H})$ 
  - X is a set instance space
  - *H*, set of subsets of *X* set of possible classifiers / hypotheses

글 제 제 글 제

э

- Set system:  $(X, \mathcal{H})$ 
  - X is a set instance space
  - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$  is shattered by  $\mathcal{H}$  if every subset of A is given by  $A \cap h$  for some  $h \in \mathcal{H}$

- Set system:  $(X, \mathcal{H})$ 
  - X is a set instance space
  - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$  is shattered by  $\mathcal{H}$  if every subset of A is given by  $A \cap h$  for some  $h \in \mathcal{H}$ 
  - Every way of splitting A is captured by a hypothesis in H
  - $2^{|A|}$  different subsets of A

- Set system:  $(X, \mathcal{H})$ 
  - X is a set instance space
  - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$  is shattered by  $\mathcal{H}$  if every subset of A is given by  $A \cap h$  for some  $h \in \mathcal{H}$ 
  - Every way of splitting A is captured by a hypothesis in H
  - $2^{|A|}$  different subsets of A
- Example:
  - $X = \mathbb{R} \times \mathbb{R}$
  - $\mathcal{H}$  : Axis-parallel rectangles
  - A : Four points forming a diamond

- Set system:  $(X, \mathcal{H})$ 
  - X is a set instance space
  - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$  is shattered by  $\mathcal{H}$  if every subset of A is given by  $A \cap h$  for some  $h \in \mathcal{H}$ 
  - Every way of splitting A is captured by a hypothesis in H
  - $2^{|A|}$  different subsets of A
- Example:
  - $X = \mathbb{R} \times \mathbb{R}$
  - $\mathcal{H}$  : Axis-parallel rectangles
  - A : Four points forming a diamond
  - H shatters A

X=G=G=G ifiers/H=G Varion szectorglan?



AML 2022

## VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of  $\mathcal{H}$  size of the largest subset of Xshattered by  $\mathcal{H}$ 
  - For axis-parallel rectangles, VC-dimension is at least 4



## VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by  $\mathcal{H}$ 
  - For axis-parallel rectangles, VC-dimension is at least 4
  - Not a universal requirement some sets of size 4 may not be shattered





# VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
  - For axis-parallel rectangles, VC-dimension is at least 4
  - Not a universal requirement some sets of size 4 may not be shattered
- No set of size 5 can be shattered by axis-parallel rectangles
  - Draw a bounding box rectangle each edge touches a boundary point
  - At least one point lies inside the bounding box
  - Any set that includes the boundary points also includes the interior point





- Intervals of reals have VC-dimension 2
  - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
  - Cannot shatter 3 points: consider subset with first and third point

- Intervals of reals have VC-dimension 2
  - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
  - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
  - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \cup [c, d] \mid a \le b, c \le d \in \mathbb{R}\}$
  - Cannot shatter 5 points: consider subset with first, third and fifth point

- Intervals of reals have VC-dimension 2
  - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
  - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
  - $X = \mathbb{R}$ ,  $\mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
  - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers
  - $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$
  - Can shatter any finite set of reals VC-dimension is infinite

Intervals of reals have VC-dimension 2

•  $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$ 



- Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
  - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
  - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers

•  $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$ 

- Can shatter any finite set of reals VC-dimension is infinite
- Convex polygons,  $X = \mathbb{R} \times \mathbb{R}$ 
  - For any *n*, place *n* points on unit circle
  - Each subset of these points is a convex polygon VC-dimension is infinite

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\overline{\ln |\mathcal{H}|} + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

AML 2022

Vcdim(H)

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

• We can rewrite this using VC-dimension.

#### Sample bound using VC-dimension

For any class  $\mathcal{H}$  and distribution D, if a training sample S is drawn using D of size  $O\left(\frac{1}{\epsilon}\left[\operatorname{VC-dim}(\mathcal{H})\ln\frac{1}{\epsilon} + \ln\frac{1}{\delta}\right]\right)$ , then with probability  $\geq 1 - \delta$ , • every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D(h) \geq \epsilon$  has training error  $\operatorname{err}_S(h) > 0$ , • i.e., every  $h \in \mathcal{H}$  with training error  $\operatorname{err}_S(h) = 0$ . has true error  $\operatorname{err}_D(h) < \epsilon$ 

Let  $\mathcal{H}$  be a hypothesis class,  $\delta, \epsilon > 0$  and S a training set of size  $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability  $\ge 1 - \delta$ , every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_D > \epsilon$  has training error  $\operatorname{err}_S > 0$ .

• We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

#### Sample bound using VC-dimension

For any class  $\mathcal{H}$  and distribution D, if a training sample S is drawn using D of size  $O\left(\frac{1}{\epsilon}\left[VC-\dim(\mathcal{H})\ln\frac{1}{\epsilon}+\ln\frac{1}{\delta}\right]\right)$ , then with probability  $\geq 1-\delta$ , • every  $h \in \mathcal{H}$  with true error  $\operatorname{err}_{D}(h) \geq \epsilon$  has training error  $\operatorname{err}_{S}(h) > 0$ , • i.e., every  $h \in \mathcal{H}$  with training error  $\operatorname{err}_{S}(h) = 0$ . has true error  $\operatorname{err}_{D}(h) < \epsilon$ 

- PAC learning and uniform convergence use size of finite hypothesis set as measure of representational capacity
- VC-dimension provides a way of measuring capacity for infinite hypothesis sets
- VC-dimension may be finite or infinite
- For finite VC-dimension, we have analogues of PAC learning guarantee and uniform convergence
- Note that these theoretical bounds are hard to use in practice
- Difficult, if not impossible, to compute VC-dimension for complex models