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Representational capacity

PAC learning guarantee

1
Let # be a hypothesis class, J,¢ > 0 and S a training set of size n > (In |H| + In(1/6))
drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.
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Representational capacity

PAC learning guarantee

g . - . 1
L a hypothesis class, d,¢ > 0 an@trammg set of si + In(1/0)) j

drawn using D \With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.

7 £ X Ds= D or X /)/r/LJ/)X
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Representational capacity

PAC learning guarantee

1
Let 7 be a hypothesis class, d,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.

m || is representational capacity, when H is finite
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Representational capacity

PAC learning guarantee el )

Let 7 be a hypothesis class, d,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.

m || is representational capacity, when H is finite Y C =D~ ﬁ al
m How do we adapt and apply these bounds when 7 is infinite?

Pranabendu Misra Lecture 2 Part A: VC Dimension AML 2022 2/7



m Set system: (X, H)
m X is a set — instance space

m H, set of subsets of X — set of possible classifiers /
hypotheses
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m Set system: (X, H)
m X is a set — instance space
m H, set of subsets of X — set of possible classifiers /

hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H
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m Set system: (X, H)
m X is a set — instance space
m H, set of subsets of X — set of possible classifiers /

hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H

m Every way of splitting A is captured by a hypothesis in
m 24 different subsets of A
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m Set system: (X, H)
m X is a set — instance space
m H, set of subsets of X — set of possible classifiers /

hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H
m Every way of splitting A is captured by a hypothesis in
m 24 different subsets of A

m Example:
E X=RxR
m 7 : Axis-parallel rectangles
m A : Four points forming a diamond
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m Set system: (X, H) X = 6 ’ o %

m X is a set — instance space
m H, set of subsets of X — set of possible classifiers / H‘ LJ VO\” [own
hypotheses S200 }‘c),—gl\Q/\_,

m A C X is shattered by H if every subset of A is given by

AN h for some h € H —
o . JeD
m Every way of splitting A is captured by a hypothesis in
m 214 different subsets of A L1 ° \) '.—‘
x| |
m Example: 2 7
| | X = R X R /T\
m 7 : Axis-parallel rectangles <b.BP

m A : Four points forming a diamond
m 7 shatters A )
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m VC-Dimension of H — size of the largest subset of X
[
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4

D o »
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m VC-Dimension of H — size of the largest subset of X
[
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4 ° °
m Not a universal requirement — some sets of size 4 may
not be shattered
o
A
[
D
Be® ®
C
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m VC-Dimension of H — size of the largest subset of X
[
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4 ° °
m Not a universal requirement — some sets of size 4 may
not be shattered
. . o
m No set of size 5 can be shattered by axis-parallel
rectangles
m Draw a bounding box rectangle — each edge touches a A
boundary point [ J
m At least one point lies inside the bounding box D
m Any set that includes the boundary points also includes Be N
the interior point
C
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X=R, H={[ab]|a<beR}

m Cannot shatter 3 points: consider subset with first and third point
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X=R, H={[ab]|a<beR}
m Cannot shatter 3 points: consider subset with first and third point
m Pairs of intervals of reals have VC-dimension 4
m X =R H={[a,b]U[c,d]|a< bc<deR}
m Cannot shatter 5 points: consider subset with first, third and fifth point

Pranabendu Misra Lecture 2 Part A: VC Dimension AML 2022



VC-Dimension, Examples

m Intervals of reals have VC-dimension 2

m X=R, H={[ab]|a<beR}

m Cannot shatter 3 points: consider subset with first and third point
m Pairs of intervals of reals have VC-dimension 4

m X =R H={[a,b]U[c,d]|a< bc<deR}

m Cannot shatter 5 points: consider subset with first, third and fifth point
m Finite sets of real numbers

B X=R, H={Z|ZCR,|Z| <o}

m Can shatter any finite set of reals — VC-dimension is infinite
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VC-Dimension, Examples

. . <% o>~ Q
m Intervals of reals have VC-dimension 2 _é—t’:——& 7 =

. -\ 0 -1 2 - -,
m X=R H={[abl|a<beR} - - =
m Cannot shatter 3 points: consider subset with first and third point

m Pairs of intervals of reals have VC-dimension 4

m X =R H={[a,b]U[c,d]|a< bc<deR}

m Cannot shatter 5 points: consider subset with first, third and fifth point
m Finite sets of real numbers

B X=R, H={Z|ZCR,|Z| <o}

m Can shatter any finite set of reals — VC-dimension is infinite
m Convex polygons, X =R x R

m For any n, place n points on unit circle

m Each subset of these points is a convex polygon — VC-dimension is infinite
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VC-dimension and machine learning

PAC learning guarantee e &4‘;«{‘44)
1 —_—

Let # be a hypothesis class, §,¢ > 0 and S a training set of size n > —(In [H| + In(1/¢))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has

training error errs > 0.
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VC-dimension and machine learning

PAC learning guarantee

1
Let 7 be a hypothesis class, d,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

m We can rewrite this using VC-dimension.

Sample bound using VC-dimension
For any class H and distribution D, if a training sample S is drawn using D of size

(0] <1 {VC—dim(?—[) In } +In H) then with probability > 1 — ¢,
€ €

m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢
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VC-dimension and machine learning

PAC learning guarantee

1
Let 7 be a hypothesis class, d,¢ > 0 and S a training set of size n > ~(In |H| + In(1/0))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

m We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

Sample bound using VC-dimension
For any class H and distribution D, if a training sample S is drawn using D of size

1 1 1 .
(0] < {VC—dim(?—[) In= +1In 5}) then with probability > 1 — ¢,
€ €

m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢
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m PAC learning and uniform convergence use size of finite hypothesis set as measure
of representational capacity

m VC-dimension provides a way of measuring capacity for infinite hypothesis sets
m VC-dimension may be finite or infinite

m For finite VC-dimension, we have analogues of PAC learning guarantee and uniform
convergence

m Note that these theoretical bounds are hard to use in practice

Difficult, if not impossible, to compute VC-dimension for complex models
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