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Supervised learning

m Set of possible input instances X
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Supervised learning

m Set of possible input instances X
m Categories C, say {0,1} %L o~ S
m Build a classification model M : X — C Q(‘V‘W %

m Restrict the types of models
)
m Hypothesis space # — e.g., linear separators ﬂ QV 1Q\Q‘\/\

m Search for best 5 = gd\DPODé

m How do we find the best M? /7 e

m Labelled training data/(training set) Je
m Choose M to minimize error (loss) with respect to the training set

m Why should M generalize well to arbitrary data?
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No free lunch

m ML algorithms minimize training loss (with respect to the training set)
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No free lunch

m ML algorithms minimize training loss (with respect to the training set)

m Goal is to minimize generalization loss (with respect to all inputs)

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.
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No free lunch

m ML algorithms minimize training loss (with respect to the training set)

m Goal is to minimize generalization loss (with respect to all inputs)

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

m Is the situation hopeless?

m NFL theorem refers to prediction inputs coming from all possible distributions

= ML assumes representative of overall data

m Prediction instances follow roughly the same distribution as training set
a e St o
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A theoretical framework for ML

m X is the space of input instances
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A theoretical framework for ML

m X is the space of input instances

m C C X is the target concept to be
learned

m e.g., X is all emails, C is the set of
spam emails
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A theoretical framework for ML

1

the space of input instances O

Cﬂ the target concept to be (e 7<

m e.g., X is all emails, C is the set of
spam emails

m X is equipped with a probability — Z D(V\j = i
o

m Any random sample from X is "[
drawn using D >< 5 o(/{} < eIl
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A theoretical framework for ML

m X is the space of input instances m 7 is a set of hypotheses

m C C X is the target concept to be m Each h € H identifies a subset of X

learned m Choose the besﬂ heH aﬁs model

m e.g., X is all emails, C is the set of
spam emails

m X is equipped with a probability
distribution D

m Any random sample from X is
drawn using D

m In particular, training set and test
set are constitute of such random
samples
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A theoretical framework for ML

m X is the space of input instances m 7 is a set of hypotheses
m C C X is the target concept to be m Each h € H identifies a subset of X
learned m Choose the bes@s model
m eg., X is all emails, C is the set of m True error: Probability that h

spam emails incorrectly classifies x € X drawn

m X is equipped with a probability randomly according to D

distribution D m erfp(h) & Prob(hAC)
-
m Any random sample from X is m hAC = (h\ C) U (C\ )

drawn using D

m In particular, training set and test
set are constitute of such random

samples S
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A theoretical framework for ML

m X is the space of input instances m 7 is a set of hypotheses
m C C X is the target concept to be m Each h € H identifies a subset of X
learned m Choose the best h € H as model
m eg., Xisall emails, C is the set of IETrue error: @Probability that h
spam emails imcorrectly classifies x € X drawn

m X is equipped with a probability randomly according to D

distribution D eer(h) Prob(hAC)

m Any random sample from X is [ =(h\ C)U(C\ h)

drawn using D —
. . | @ Given a (finite)
m In particular, training set and test

set are constitute of such random training sample
samples > errs(h) + SN -|/\5|
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A theoretical framework for ML

X, inputs with distribution D

m C C X, target concept

h € H, hypothesis (model) for C
m True error: errp(h) = Prob(hAC)

Training error:
errs(h) =[S N (hAC)|/|S]|
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m X, inputs with distribution D

m C C X, target concept

m h € H, hypothesis (model) for C
m True error: errp(h) = Prob(hAC)

Training error:
errs(h) =[S N (hAC)|/|S]|

Goal

Minimizing training error should
correspond to minimizing true error
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A theoretical framework for ML

m X, inputs with distribution D m Overfitting Low training error but

high true error
m C C X, target concept &

m Underfitting Cannot achieve low

m h € H, hypothesis (model) for C training /true error

m True error: errp(h) = Prob(hAC)

Training error:
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A theoretical framework for ML

X, inputs with distribution D m Overfitting Low training error but
high true error

m C C X, target concept
m Underfitting Cannot achieve low
training/true error

h € H, hypothesis (model) for C

m True error: errp(h) = Prob(hAC) m Related to th<representationa|

m Training error: H Capacitﬁof H
errs(h) =[S N (hAC)|/IS] he m How expressive is 77 How many
different concepts can it capture?
Goal

m Capacity too high — overfitting
Minimizing training error should

e m Capacity too low — underfitting
correspond to minimizing true error
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Probably Approximately Correct (PAC) learning

m Assume 7 is finite — use || for capacity
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Probably Approximately Correct (PAC) learning

m Assume 7 is finite — use |#| for capacity Y NS S
Z Y

g |
m Probably Approximately Correct learning /) N AY) Lot Toen

With high probability, the hypothesis h that@the sample S also fits the
concept C approximately correctly
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Probably Approximately Correct (PAC) learning

m Assume 7 is finite — use || for capacity

m Probably Approximately Correct learning

Withphigh probability, the hypothesis h that fits the sample S also fits the
concept C approximately correctly

Theorem (PAC |learning guarantee)

ize of the sample required for PAC guarantee determined by parameters 9, ¢

—2 A

m Smallér § means higher probability of find a good hypothesis ’1 H

m Smallér e means better performance with respect to generalization
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

Let ,¢ > 0. Let S be a training set of size n > \7—[| drawn usmg
D. With probability > 1 — §, every h € H satisfies{errs(h eer | <

m Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

1

Let ,¢ > 0. Let S be a training set of size n > 2—2(|n || + In(2/6)) drawn using
€

D. With probability > 1 — §, every h € H satisfies |errs(h) — errp(h)| < e.

m Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

m What if H is not finite?
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence) . \[C/DTWU'\‘D

1

Let ,¢ > 0. Let S be a training set of size n > 2—2(|n || + In(2/6)) drawn using
€

D. With probability > 1 — §, every h € H satisfies |errs(h) — errp(h)| < e.

m Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

m What if H is not finite?

m Other measures of capacity — e.g. VC-dimension @% H)
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

1

Let ,¢ > 0. Let S be a training set of size n > 2—2(|n || + In(2/6)) drawn using
€

D. With probability > 1 — §, every h € H satisfies |errs(h) — errp(h)| < e.

m Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

m What if # is not finite?
m Other measures of capacity — e.g. VC-dimension

m Analogous convergence theorems in terms of VC-dimension
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Overfitting and underfitting

Example: Regression

m H, is set of polynomials of
degree d
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Overfitting and underfitting
Example: Regression me
P ;

m H, is set of polynomials of >
degree d . /@( . - o

m Increasing d increases ° *
expressiveness — higher
representational capacity -

m Using too high a d results in

overfitting
a8
m Using too low a d results in W \C
underfitting N

e
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Overfitting and underfitting

. Underfitting Appropriate capacity Overfitting
Example: Regression

m H, is set of polynomials of .®

degree d .~ /< . .

m Increasing d increases ° *
expressiveness — higher
representational capacity

£ £ N

m Using too high a d results in m Random points lying along a quadratic
overfitting

m Linear function underfits
m Using too low a d results in

underfitting
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Overfitting and underfitting

. Underfitting Appropriate capacity Overfitting
Example: Regression

m H, is set of polynomials of .®

degree d .~ /< . .

m Increasing d increases ° *
expressiveness — higher
representational capacity

£ £ N

m Using too high a d results in m Random points lying along a quadratic
overfitting

m Linear function underfits
m Using too low a d results in

underfitting m Quadratic fits and generalizes well

m Degree 9 polynomial overfits
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Capacity and error

4 .
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Capacity and error

— - Training error

Underfitting zone| Overfitting zone . .
€ & —— Generalization error

Error

0 Optimal Capacity
Capacity

m As capacity increases, training
error decreases

m Initially, generalization error also
decreases
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Capacity and error
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m As capacity increases, training m At some point, generalization error starts
error decreases increasing

m Initially, generalization error also
decreases
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Capacity and error

— - Training error

Underfitting zone| Overfitting zone . .
€ & —— Generalization error

i
o
=
=
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1
0 Optimal Capacity
Capacity B
m As capacity increases, training m At some point, generalization error starts
error decreases increasing
m Initially, generalization error also m Optimum capacity is not where training
decreases error is minimum

AML 2022
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eory and practice

m Deep learning models are too
complex to compute representational
capacity explicitly
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Theory and practice

. Regularization
m Deep learning models are too &

complex to compute representational m Add a penalty for model complexity
capacity explicitly to the loss function

m May not even be able to achieve true m Trade off lower training error against
representational capacity penalty

m Effective capacity limited by T
O —
capabilities of parameter estimation i Zﬁ o /2&7 Tean
algorithm (backpropagation with

NS
. . . (C)W
optimization) Z o) Oﬂ): ];/‘ﬁ @E@ebw )

m Parameter estimation is a complex

nonlinear optimization y: e C m
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Theory and practice

Regularization

m Deep learning models are too

complex to compute representational m Add a penalty for model complexity
capacity explicitly to the loss function

m May not even be able to achieve true m Trade off lower training error against
representational capacity penalty

m Effective capacity limited by
capabilities of parameter estimation
algorithm (backpropagation with
optimization)

Hyperparameters

ettings that adjust the capacity —
e.g., degree of polynomial
T m Set externally, not learned
m Parameter estimation is a complex
nonlinear optimization m Search hyperparameter combinations
for optimal settings
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m Supervised learning builds a model that minimize training error
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m Supervised learning builds a model that minimize training error
m Real goal is to minimize generalization error
m PAC learning provides a theoretical framework to justify this

m Discrepancies in representational capacity of models can cause underfitting or overfitting

Pranabendu Misra Lecture 1: Theoretical foundations of ML AML 2022 11/11



Supervised learning builds a model that minimize training error e

—— _— g n
IS to minimize generallzatlon erro o v
\pﬂﬁ

m PAC learning provides a theoretical framework to justify this o

goa

m Discrepancies in representational capacity of models can cause underfitting or overfitting

m In practice, use regularization and hyperparameter search to identify optimum capacity
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