LECTURE 9

1. Principal Bundles

1.1. Basic assumptions. We fix once and for all in this and the next lecture a topological Group G. We will assume all topological spaces that occur in these two lectures (including G) are Hausdorff. All groups actions of G on topological spaces that occur will be assumed to be continuous. If A and B are topological spaces, then the symbol $f: A \xrightarrow{\sim} B$ means that $f: A \to B$ is a homeomorphism. If we do not wish to label the homeomorphism, we simple write $A \xrightarrow{\sim} B$ to denote a specific (though nameless) homeomorphism. If $\mathscr{U} = \{U_{\alpha}\}$ is an open cover of a topological space X, then

$$U_{\alpha_1\dots\alpha_n} := U_{\alpha_1} \cap \dots \cap U_{\alpha_n}.$$

1.2. Fibre Bundles. Let F be a topological space. Recall that a continuous map $\pi: \mathscr{F} \to X$ between topological spaces is said to be a fibre bundle with fibre F if there is an open cover $\mathscr{U} = \{U_{\alpha}\}$ of X and homeomorphisms (one for each index α)

$$\varphi_{\alpha} \colon U_{\alpha} \times F \xrightarrow{\sim} \pi^{-1} U_{\alpha}$$

such that

$$U_{\alpha} \times F \xrightarrow{\varphi_{\alpha}} \pi^{-1} U_{\alpha}$$
projection
$$\bigvee_{U_{\alpha}}^{\text{via } \theta}$$

commutes. in the above we call X the base of the fibre bundle and F the fibre of the fibre bundle.

In this case, if

$$\varphi_{\alpha\beta} \colon U_{\alpha\beta} \times F \xrightarrow{\sim} U_{\alpha\beta} \times F$$

 $\varphi_{\alpha\beta} \colon U_{\alpha\beta} \times F \longrightarrow U_{\alpha\beta} \times F$ denotes the automorphism $\varphi_{\alpha}^{-1}|_{U_{\alpha\beta}} \circ \varphi_{\beta}|_{U_{\alpha\beta}}$, then we have maps $h_{\alpha\beta} \colon U_{\alpha\beta} \to \operatorname{Aut}(F)$ such that

$$\varphi_{\alpha\beta}(u, f) = (u, h_{\alpha\beta}(u)f) \qquad (u \in U_{\alpha\beta}, f \in F).$$

Here $\operatorname{Aut}(F)$ denotes the group of topological automorphisms of F.

Now suppose G acts on F from the left. We have a natural group homomorphism $G \to \operatorname{Aut}(F)$. We say the above fibre bundle $\pi \colon \mathscr{F} \to X$ has structure group G if maps $h_{\alpha\beta}$ above factor through G and the resulting maps $g_{\alpha\beta} \colon U_{\alpha\beta} \to G$ are continuous. Note that in this case

$$\varphi_{\alpha\beta}(u, f) = (u, g_{\alpha\beta}(u)f) \qquad (u \in U_{\alpha\beta}, f \in F).$$

 $g_{\alpha\beta}g_{\beta\gamma} = g_{\alpha\gamma}$

It is clear that for any three indices α , β , and γ we have the *cocycle rules*:

(1.2.1)

on $U_{\alpha\beta\gamma}$.

Date: 10 Spetember 2012.

LECTURE 9

Data of the form $(g_{\alpha\beta})_{\alpha\beta}$, with the maps $g_{\alpha\beta} : U_{\alpha\beta} \to G$ continuous and satisfying (1.2.1) on $U_{\alpha\beta\gamma}$ is called a 1-cocycle.

Remark 1.2.2. Conversely, given $X, \mathscr{U} = \{U_{\alpha\beta}\}$ and F as above, a 1-cocycle $(g_{\alpha\beta})_{\alpha\beta}$, gives rise to a fibre bundle $\pi: \mathscr{F} \to X$ with fibre F and structure group G such that the 1-cocycle induced by \mathscr{F} is $(g_{\alpha\beta})$. Indeed set

$$\mathscr{F} = \coprod_{\alpha} (U_{\alpha} \times F) / \sim$$

where for $(u_1, f_1) \in U_{\alpha} \times F$ and $(u_2, f_2) \in U_{\beta} \times F$, the relationship $(u_1, f_1) \sim (u_2, f_2)$ holds if and only if $u_1, u_2 \in U_{\alpha\beta}$ and $f_1 = g_{\alpha\beta}f_2$. Moreover the two processes (of obtaining a 1-cocycle for a trivialising data for a fibre bundle and of constructing a fibre bundle from a 1-cocycle) are inverse processes.

Remark 1.2.3. In view of Remark 1.2.2, if $\pi: \mathscr{F} \to X$ is a fibre bundle with structure group G and F' is a topological space on which G acts on the left, then $\pi: \mathscr{F} \to X$ induces a fibre bundle $\pi': \mathscr{F}' \to X$ with fibre F' and structure group G, trivializing over the same open sets that \mathscr{F} does, and having the same transition functions $g_{\alpha\beta}$. Indeed the 1-cocyle $(g_{\alpha\beta})$ arising from $\mathscr{F} \to X$ can be used to glue the $U_{\alpha} \times F'$ as we did in Remark 1.2.2.

Definition 1.2.4. A *principal* G-bundle $\pi: P \to X$ is a fibre bundle with structure group G with fibre also equal to G, with the natural left action of G on itself.

Proposition 1.2.5. If $\pi: P \to X$ is a principal *G*-bundle then there is a natural right action of *G* on *P* which is free, and whose orbits are the fibres of π . Locally, on a trivializing open subset *U* if *X* this right *G* action on *P* looks like:

$$(u,g)g^* = (u,gg^*)$$
 $u \in U$, and $g,g^* \in G$.

Proof. It is clear that this local action commutes with left multiplication by the transition functions $g_{\alpha\beta}$ and hence glues.

Theorem 1.2.6. Let $\pi: E \to X$ be a continuous *G*-equivariant map with *G* acting trivially on *X* and on the right on *E*. Then this *G* action on *E* arises from a natural principal *G*-bundle structure on $\pi: E \to X$ if and only if we have an open cover $\mathscr{U} = \{U_{\alpha}\}$ of *X* and *G*-equivariant homeomorphisms (for the right *G*-action on $U_{\alpha} \times G$)

$$\varphi_{\alpha} \colon U_{\alpha} \times G \longrightarrow \pi^{-1}(U_{\alpha}),$$

one for each α , such that

$$U_{\alpha} \times G \xrightarrow{\varphi_{\alpha}} \pi^{-1} U_{\alpha}$$

$$\downarrow^{via \theta}$$

$$U_{\alpha}$$

commutes for every α .

Proof. This is part of your mid-term.

LECTURE 9

1.3. Examples.

- If X is a connected, path connected, locally simply connected space and $x_0 \in X$ a fixed point, then the universal cover of $X, \pi: \widetilde{X} \to X$ is a principal $\pi(X, x_0)$ -bundle
- Suppose $\mathscr{V} \to X$ is a vector bundle of rank *n*. Then it is after bundle with fibre \mathbf{R}^n (or \mathbf{C}^n) and structure group $GL_n(\mathbf{R})$ (or $GL_n(\mathbf{C})$).

1.4. **Reduction of structure group.** Suppose H is closed subgroup of H and $\pi: \mathscr{F} \to X$ a fibre bundle with fibre F. Note that H also acts on F. Suppose $\pi: \mathscr{F} \to X$ is also a fibre bundle with structure group H. Then we say \mathscr{F} has a reduction of structure group to H. In other words, if we can show that there are trivialisations of \mathscr{F} such that the transition functions $g_{\alpha\beta}$ take values in H, then (and only then) $\mathscr{F} \to X$ has a reduction of structure group to H.