LECTURE 8

1. Descent for closed subschemes

1.1. The set theoretic case. Suppose $p: X' \to X$ is a surjective map of sets. Let $X'':=X'\times_X X'=\{(a,b)\in X'\times X' \mid p(a)=p(b)\}$ and for i=1,2 let $p_i: X''\to X'$, be the two projections. Suppose $Z' \subset X'$ is a subset of X'. One checks that $Z'=p^{-1}(Z)$ for some Z if and only if $p_1^{-1}(Z')=p_2^{-1}(Z')$, i.e., if and only if $Z'\times_X X'=X'\times_X Z'$. Since $p\circ p_1=p\circ p_2$ the "only if" part is clear. For the converse, suppose $Z'\times_X X'=X'\times_X Z'$. Set Z=p(Z'). We claim $Z'=p^{-1}(Z)$. Clearly $Z'\subset p^{-1}(Z)$. To see the reverse inclusion, let $a\in p^{-1}(Z)$. We can find a $b\in Z'$ such that p(a)=p(b). Therefore $(a,b)\in X'\times_X Z'$. By our hypothesis, this means $(a,b)\in Z'\times_X X'$. In other words, $a\in Z'$. Thus $Z'=p^{-1}(Z')$.

This is the fact that Grothendieck generalized for closed subschemes of schemes.

1.2. Decent for fpqc maps. As usual, for any map $T' \to T$ in $Sch_{/S}$, T'' and T''' will be given by $T'' := T' \times_T T'$ and $T''' := T' \times_T T' \times_T T'$. The maps $p_1, p_2: T'' \rightrightarrows T'$ denote the two projections and $p_{12}, p_{13} p_{23}$ the three projections from T''' to T''.

Suppose $p: T' \to T$ is fpqc. We have a commutative diagram (with all six faces cartesian):

Since descent (obviously) works for Zariski covers, and we have proved that it works for faithfully flat and quasi-compact maps, therefore it works for fpqc maps (see the October 17 notes for the definition of fpqc maps). We're using the fact that the fpqc topology on $\operatorname{Sch}_{/S}$ is generated by the Zariski topology and the topology given by faithfully flat and quasi-compact maps. In other words if \mathscr{F}' is a quasi-coherent sheaf on T' and we have an isomorphism $\varphi \colon p_2^*\mathscr{F}' \xrightarrow{} p_1^*\mathscr{F}'$ such that $p_{12}^*(\varphi) \circ p_{23}^*(\varphi) = p_{13}^*(\varphi)$, then up to isomorphism, there is a unique quasi-coherent sheaf \mathscr{F} on T satisfying $p^*\mathscr{F} = \mathscr{F}'$.

Exercise: Using the various characterizations of fpqc maps given in the earlier notes, show directly that descent for fpqc maps follows from descent for faithfully flat and quasi-compact maps. [Hint: First reduce to T = Spec A. Next, pick a quasi-compact open subscheme V' of T' such that p(V') = T. Then $V' \to T$ is a

Date: Sep 7, 2012.

LECTURE 8

quasi-compact faithfully flat map. Descent works for this, and we have obtain a quasi-coherent sheaf \mathscr{F} on T. To show that the end-product (i.e. \mathscr{F}) is independent of the process, consider $V = V' \cup V''$ where V'' is another quasi-compact open subscheme of T' which maps surjectively onto T, and use the fact that V is also quasi-compact, so that descent works for $V \to T$. The uniqueness of the descended sheaf should give you the required result.]

1.3. **Descent for quotient sheaves.** The following two results are part of your Homework.

Proposition 1.3.1. Let $p: T' \to T$ be an fpqc-map and \mathscr{G} a quasi-coherent \mathscr{O}_{T} -module. Suppose we have a surjective map of quasi-coherent sheaves $\theta: p^*\mathscr{G} \twoheadrightarrow \mathscr{F}$ where \mathscr{F} is a quasi-coherent $\mathscr{O}_{T'}$ -module such that there is an isomorphism

$$\varphi \colon p_2^* \mathscr{F} \xrightarrow{\sim} p_1^* \mathscr{F}$$

satisfying the equation $\varphi \circ p_2^*(\theta) = p_1^*(\theta)$ (under the identification $p_1^*p^*\mathscr{G} = p_2^*p^*\mathscr{G}$). Then (\mathscr{F}, φ) is a descent datum. Moreover If \mathscr{H} is the quasi-coherent sheaf on T such that $\mathscr{F} = p^*\mathscr{H}$, then there is a unique surjective map $\gamma \colon \mathscr{G} \twoheadrightarrow \mathscr{H}$ such that $p^*\gamma = \theta$

From the above, one can deduce:

Corollary 1.3.2. [SGA 1, Exposé VIII, Corollaire 1.9] let $Z' \hookrightarrow T'$ be a closed subscheme of T' such that $p_1^{-1}(Z') = p_2^{-1}(Z')$. Then there is a unique closed subscheme $Z \hookrightarrow T$ such that $p^{-1}(Z) = Z'$.

Proof. This is part of your HW.

2. Schemes are fpqc-sheaves

Fix a scheme S. In this section we will prove that a scheme X over S is necessarily an fpqc-sheaf on $Sch_{/S}$. More precisely, we will prove that h_X is an fpqc-sheaf over $Sch_{/S}$. Note that since the fpqc topology is finer than the Zariski, étale, and fppf topologies on $Sch_{/S}$, it follows that X is a Zariski, étale, and an fppf-sheaf.

2.1. The problem restated. Fix $X \in Sch_{S}$. Suppose

is a cartesian diagram with p (and hence p_1 and p_2) fpqc. In order to show that h_X is an fpqc-sheaf we have to show that the sequence of sets

$$h_X(T) \to h_X(T') \rightrightarrows h_X(T'')$$

is exact, where the first arrow is p^* and the double arrow arises from p_1^* and p_2^* .

The problem can be rephrased as follows. Suppose $f': T' \to X$ is a map in $Sch_{/S}$ such that $f' \circ p_1 = f' \circ p_2$. Then there is a unique map $f: T \to X$ in $Sch_{/S}$ such that $f' = f \circ p$. In other words, if the diagram of solid arrows below commutes, then the dotted arrow can be filled in a unique way to make the whole diagram commute.

Proof. Part of your HW.

(2.1.1)

We summarize the above in the form of the following theorem:

Theorem 2.1.2. Let X be an S-scheme. Then X is a sheaf on the fpqc site (whence on the Zariski, étale, and fppf sites) on $Sch_{/S}$.

We point out that the hierarchy of topologies on $Sch_{/S}$, with the arrows pointing toward finer topologies, is:

Zariski
$$\rightarrow$$
 étale \rightarrow fppf \rightarrow fpqc.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no° 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [EGA I] _____, Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
- [EGA II] _____, Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
- [EGA III₁] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
- [EGA III₂] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
- [EGA IV₁] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
- [EGA IV₂] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
- [EGA IV₃] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
- [EGA IV₄] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
- [SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, *Commutative Ring Theory*, Cambridge Studies 89.