
LECTURE 8

1. Descent for closed subschemes

1.1. The set theoretic case. Suppose p : X ′ → X is a surjective map of sets. Let
X ′′ := X ′×XX

′ = {(a, b) ∈ X ′×X ′ | p(a) = p(b)} and for i = 1, 2 let pi : X ′′ → X ′,
be the two projections. Suppose Z ′ ⊂ X ′ is a subset of X ′. One checks that
Z ′ = p−1(Z) for some Z if and only if p−11 (Z ′) = p−12 (Z ′), i.e., if and only if
Z ′ ×X X ′ = X ′ ×X Z ′. Since p ◦p1 = p ◦p2 the “only if” part is clear. For the
converse, suppose Z ′ ×X X ′ = X ′ ×X Z ′. Set Z = p(Z ′). We claim Z ′ = p−1(Z).
Clearly Z ′ ⊂ p−1(Z). To see the reverse inclusion, let a ∈ p−1(Z). We can find a
b ∈ Z ′ such that p(a) = p(b). Therefore (a, b) ∈ X ′ ×X Z ′. By our hypothesis, this
means (a, b) ∈ Z ′ ×X X ′. In other words, a ∈ Z ′. Thus Z ′ = p−1(Z ′).

This is the fact that Grothendieck generalized for closed subschemes of schemes.

1.2. Decent for fpqc maps. As usual, for any map T ′ → T in Sch/S , T ′′ and T ′′′

will be given by T ′′ := T ′×TT
′ and T ′′′ := T ′×TT

′×TT
′. The maps p1, p2 : T ′′ ⇒ T ′

denote the two projections and p
12
, p

13
p

23
the three projections from T ′′′ to T ′′.

Suppose p : T ′ → T is fpqc. We have a commutative diagram (with all six faces
cartesian):

T ′′

p1

��

p2 // T ′

p

��

T ′′′

p23

=={{{{{{{{ p
13 //

p12

��

T ′′

p2

>>||||||||

p1

��

T ′
p // T

T ′′

p
2

=={{{{{{{{

p1

// T ′
p

>>||||||||

Since descent (obviously) works for Zariski covers, and we have proved that it
works for faithfully flat and quasi-compact maps, therefore it works for fpqc maps
(see the October 17 notes for the definition of fpqc maps). We’re using the fact that
the fpqc topology on Sch/S is generated by the Zariski topology and the topology
given by faithfully flat and quasi-compact maps. In other words if F ′ is a quasi-
coherent sheaf on T ′ and we have an isomorphism ϕ : p∗2F

′ −→∼ p∗1F
′ such that

p∗
12

(ϕ) ◦p23
∗(ϕ) = p∗

13
(ϕ), then up to isomorphism, there is a unique quasi-coherent

sheaf F on T satisfying p∗F = F ′.

Exercise: Using the various characterizations of fpqc maps given in the earlier
notes, show directly that descent for fpqc maps follows from descent for faithfully
flat and quasi-compact maps. [Hint: First reduce to T = SpecA. Next, pick a
quasi-compact open subscheme V ′ of T ′ such that p(V ′) = T . Then V ′ → T is a
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quasi-compact faithfully flat map. Descent works for this, and we have obtain a
quasi-coherent sheaf F on T . To show that the end-product (i.e. F ) is independent
of the process, consider V = V ′ ∪ V ′′ where V ′′ is another quasi-compact open
subscheme of T ′ which maps surjectively onto T , and use the fact that V is also
quasi-compact, so that descent works for V → T . The uniqueness of the descended
sheaf should give you the required result.]

1.3. Descent for quotient sheaves. The following two results are part of your
Homework.

Proposition 1.3.1. Let p : T ′ → T be an fpqc-map and G a quasi-coherent OT -
module. Suppose we have a surjective map of quasi-coherent sheaves θ : p∗G � F
where F is a quasi-coherent OT ′-module such that there is an isomorphism

ϕ : p∗2F −→∼ p∗1F

satisfying the equation ϕ ◦ p∗2(θ) = p∗1(θ) (under the identification p∗1p
∗G = p∗2p

∗G ).
Then (F , ϕ) is a descent datum. Moreover If H is the quasi-coherent sheaf on T
such that F = p∗H , then there is a unique surjective map γ : G � H such that
p∗γ = θ

From the above, one can deduce:

Corollary 1.3.2. [SGA 1, Exposé VIII, Corollaire 1.9] let Z ′ ↪→ T ′ be a closed sub-
scheme of T ′ such that p−11 (Z ′) = p−12 (Z ′). Then there is a unique closed subscheme
Z ↪→ T such that p−1(Z) = Z ′.

Proof. This is part of your HW. �

2. Schemes are fpqc-sheaves

Fix a scheme S. In this section we will prove that a schemeX over S is necessarily
an fpqc-sheaf on Sch/S . More precisely, we will prove that hX is an fpqc-sheaf over
Sch/S . Note that since the fpqc topology is finer than the Zariski, étale, and fppf
topologies on Sch/S , it follows that X is a Zariski, étale, and an fppf-sheaf.

2.1. The problem restated. Fix X ∈ Sch/S . Suppose

T ′′
p2 //

p1

��

T ′

p

��
T ′

p
// T

is a cartesian diagram with p (and hence p1 and p2) fpqc. In order to show that
hX is an fpqc-sheaf we have to show that the sequence of sets

hX(T )→ hX(T ′) ⇒ hX(T ′′)

is exact, where the first arrow is p∗ and the double arrow arises from p∗1 and p∗2.
The problem can be rephrased as follows. Suppose f ′ : T ′ → X is a map in Sch/S

such that f ′ ◦p1 = f ′ ◦p2. Then there is a unique map f : T → X in Sch/S such
that f ′ = f ◦p. In other words, if the diagram of solid arrows below commutes,
then the dotted arrow can be filled in a unique way to make the whole diagram
commute.
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(2.1.1) T ′′
p
2 //

p1

��

T ′

p

�� f ′

��

T ′
p //

f ′
--

T f

&&
X

Proof. Part of your HW. �
We summarize the above in the form of the following theorem:

Theorem 2.1.2. Let X be an S-scheme. Then X is a sheaf on the fpqc site
(whence on the Zariski, étale, and fppf sites) on Sch/S.

We point out that the hierarchy of topologies on Sch/S , with the arrows pointing
toward finer topologies, is:

Zariski→ étale→ fppf→ fpqc.
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[EGA III1] , Élements de géométrie algébrique III. Etude cohomologique des faisceaux
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phismesn de schémas III, Publ. Math. IHES 28(1966).
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