LECTURE 8

1. Descent for closed subschemes

1.1. The set theoretic case. Suppose $p: X^{\prime} \rightarrow X$ is a surjective map of sets. Let $X^{\prime \prime}:=X^{\prime} \times_{X} X^{\prime}=\left\{(a, b) \in X^{\prime} \times X^{\prime} \mid p(a)=p(b)\right\}$ and for $i=1,2$ let $p_{i}: X^{\prime \prime} \rightarrow X^{\prime}$, be the two projections. Suppose $Z^{\prime} \subset X^{\prime}$ is a subset of X^{\prime}. One checks that $Z^{\prime}=p^{-1}(Z)$ for some Z if and only if $p_{1}^{-1}\left(Z^{\prime}\right)=p_{2}^{-1}\left(Z^{\prime}\right)$, i.e., if and only if $Z^{\prime} \times_{X} X^{\prime}=X^{\prime} \times_{X} Z^{\prime}$. Since $p \circ p_{1}=p \circ p_{2}$ the "only if" part is clear. For the converse, suppose $Z^{\prime} \times_{X} X^{\prime}=X^{\prime} \times_{X} Z^{\prime}$. Set $Z=p\left(Z^{\prime}\right)$. We claim $Z^{\prime}=p^{-1}(Z)$. Clearly $Z^{\prime} \subset p^{-1}(Z)$. To see the reverse inclusion, let $a \in p^{-1}(Z)$. We can find a $b \in Z^{\prime}$ such that $p(a)=p(b)$. Therefore $(a, b) \in X^{\prime} \times{ }_{X} Z^{\prime}$. By our hypothesis, this means $(a, b) \in Z^{\prime} \times_{X} X^{\prime}$. In other words, $a \in Z^{\prime}$. Thus $Z^{\prime}=p^{-1}\left(Z^{\prime}\right)$.

This is the fact that Grothendieck generalized for closed subschemes of schemes.
1.2. Decent for fpqc maps. As usual, for any map $T^{\prime} \rightarrow T$ in $\mathbb{S c h}_{/ S}, T^{\prime \prime}$ and $T^{\prime \prime \prime}$ will be given by $T^{\prime \prime}:=T^{\prime} \times_{T} T^{\prime}$ and $T^{\prime \prime \prime}:=T^{\prime} \times_{T} T^{\prime} \times_{T} T^{\prime}$. The maps $p_{1}, p_{2}: T^{\prime \prime} \rightrightarrows T^{\prime}$ denote the two projections and $p_{12}, p_{13} p_{23}$ the three projections from $T^{\prime \prime \prime}$ to $T^{\prime \prime}$.

Suppose $p: T^{\prime} \rightarrow T$ is fpqc. We have a commutative diagram (with all six faces cartesian):

Since descent (obviously) works for Zariski covers, and we have proved that it works for faithfully flat and quasi-compact maps, therefore it works for fpqc maps (see the October 17 notes for the definition of fpqc maps). We're using the fact that the fpqc topology on $\mathbb{S c h}_{/ S}$ is generated by the Zariski topology and the topology given by faithfully flat and quasi-compact maps. In other words if \mathscr{F}^{\prime} is a quasicoherent sheaf on T^{\prime} and we have an isomorphism $\varphi: p_{2}^{*} \mathscr{F}^{\prime} \xrightarrow{\sim} p_{1}^{*} \mathscr{F}^{\prime}$ such that $p_{12}^{*}(\varphi) \circ p_{23}{ }^{*}(\varphi)=p_{13}^{*}(\varphi)$, then up to isomorphism, there is a unique quasi-coherent sheaf \mathscr{F} on T satisfying $p^{*} \mathscr{F}=\mathscr{F}^{\prime}$.
Exercise: Using the various characterizations of fpqc maps given in the earlier notes, show directly that descent for fpqc maps follows from descent for faithfully flat and quasi-compact maps. [Hint: First reduce to $T=\operatorname{Spec} A$. Next, pick a quasi-compact open subscheme V^{\prime} of T^{\prime} such that $p\left(V^{\prime}\right)=T$. Then $V^{\prime} \rightarrow T$ is a

Date: Sep 7, 2012.
quasi-compact faithfully flat map. Descent works for this, and we have obtain a quasi-coherent sheaf \mathscr{F} on T. To show that the end-product (i.e. \mathscr{F}) is independent of the process, consider $V=V^{\prime} \cup V^{\prime \prime}$ where $V^{\prime \prime}$ is another quasi-compact open subscheme of T^{\prime} which maps surjectively onto T, and use the fact that V is also quasi-compact, so that descent works for $V \rightarrow T$. The uniqueness of the descended sheaf should give you the required result.]
1.3. Descent for quotient sheaves. The following two results are part of your Homework.

Proposition 1.3.1. Let $p: T^{\prime} \rightarrow T$ be an fpqc-map and \mathscr{G} a quasi-coherent $\mathscr{O}_{T^{-}}$module. Suppose we have a surjective map of quasi-coherent sheaves $\theta: p^{*} \mathscr{G} \rightarrow \mathscr{F}$ where \mathscr{F} is a quasi-coherent $\mathscr{O}_{T^{\prime}-m o d u l e ~ s u c h ~ t h a t ~ t h e r e ~ i s ~ a n ~ i s o m o r p h i s m ~}^{\text {is }}$

$$
\varphi: p_{2}^{*} \mathscr{F} \xrightarrow{\sim} p_{1}^{*} \mathscr{F}
$$

satisfying the equation $\varphi \circ p_{2}^{*}(\theta)=p_{1}^{*}(\theta)$ (under the identification $p_{1}^{*} p^{*} \mathscr{G}=p_{2}^{*} p^{*} \mathscr{G}$). Then (\mathscr{F}, φ) is a descent datum. Moreover If \mathscr{H} is the quasi-coherent sheaf on T such that $\mathscr{F}=p^{*} \mathscr{H}$, then there is a unique surjective map $\gamma: \mathscr{G} \rightarrow \mathscr{H}$ such that $p^{*} \gamma=\theta$

From the above, one can deduce:
Corollary 1.3.2. [SGA 1, Exposé VIII, Corollaire 1.9] let $Z^{\prime} \hookrightarrow T^{\prime}$ be a closed subscheme of T^{\prime} such that $p_{1}^{-1}\left(Z^{\prime}\right)=p_{2}^{-1}\left(Z^{\prime}\right)$. Then there is a unique closed subscheme $Z \hookrightarrow T$ such that $p^{-1}(Z)=Z^{\prime}$.

Proof. This is part of your HW.

2. Schemes are fpqc-sheaves

Fix a scheme S. In this section we will prove that a scheme X over S is necessarily an fpqc-sheaf on $\mathbb{S c h}_{/ S}$. More precisely, we will prove that h_{X} is an fpqc-sheaf over $\mathbb{S c h}_{/ S}$. Note that since the fpqc topology is finer than the Zariski, étale, and fppf topologies on $\mathbb{S c h}_{/ S}$, it follows that X is a Zariski, étale, and an fppf-sheaf.
2.1. The problem restated. Fix $X \in \mathbb{S c h}_{/ S}$. Suppose

is a cartesian diagram with p (and hence p_{1} and p_{2}) fpqc. In order to show that h_{X} is an fpqc-sheaf we have to show that the sequence of sets

$$
h_{X}(T) \rightarrow h_{X}\left(T^{\prime}\right) \rightrightarrows h_{X}\left(T^{\prime \prime}\right)
$$

is exact, where the first arrow is p^{*} and the double arrow arises from p_{1}^{*} and p_{2}^{*}.
The problem can be rephrased as follows. Suppose $f^{\prime}: T^{\prime} \rightarrow X$ is a map in $\mathbb{S c h}_{/ S}$ such that $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$. Then there is a unique map $f: T \rightarrow X$ in $\mathbb{S c h}_{/ S}$ such that $f^{\prime}=f \circ p$. In other words, if the diagram of solid arrows below commutes, then the dotted arrow can be filled in a unique way to make the whole diagram commute.

Proof. Part of your HW.
We summarize the above in the form of the following theorem:
Theorem 2.1.2. Let X be an S-scheme. Then X is a sheaf on the fpqc site (whence on the Zariski, étale, and fppf sites) on $\mathbb{S} h_{/ S}$.

We point out that the hierarchy of topologies on $\mathbb{S c h}_{/ S}$, with the arrows pointing toward finer topologies, is:

$$
\begin{gathered}
\text { Zariski } \rightarrow \text { étale } \rightarrow \text { fppf } \rightarrow \text { fpqc. } \\
\text { REFERENCES }
\end{gathered}
$$

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971)
[EGA I] (1960).
[EGAII] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III ${ }_{1}$ _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA $\left.\mathrm{III}_{2}\right]$ _, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
$\left[\mathrm{EGA} \mathrm{IV}_{1}\right] \ldots$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGAIV}_{2}\right] \ldots$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
[EGAIV 3 _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
$\left[\mathrm{EGA} \mathrm{IV}_{4}\right] \ldots$ _ Élements de géométrie algébrique $I V$. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

