
LECTURE 7

1. Examples

In what follows, S is a scheme and Sch/S denotes the category of S-schemes, i.e.,
the category whose objects are maps of schemes X → S and whose morphisms are
commutative diagrams:

X //

��@
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@@
@@

@ Y

����
��
��
��

S

If X → S is an object in Sch/S , we often think of X itself as the object, if the
underlying map (the so called structural map or sometimes the structure map)
from X to S is understood. From this point of view, a morphism in Sch/S is simply
a map of the underlying schemes which is compatible with the structure maps of
the source and target.

Let P be a property of maps in Sch/S (e.g, P= faithfully flat). A set of maps
{Ti → T} in Sch/S is said to be jointly P if the induced map of schemes∐

i

Ti → T

has property P.
Here are some examples of Grothendieck topologies on Sch/S . There is some

confusion regarding terminlogy in 4), 5), 6) and 7) (see Remark 1.1 below).
1) The big Zariski site. A covering {Ui → U} is a collection of open immersions

which are jointly surjective.
2) The big étale site. A covering {Ui → U} is a collection of maps in Sch/S

which is jointly surjective and étale.
3) The faithfully flat site. A covering {Ui → U} is a collection of maps in Sch/S

which is jointly faithfully flat.
4) The faithfully flat and quasi compact site. A covering {Ui → U} is a collection

of maps in Sch/S which is jointly faithfully flat and quasi-compact (P = faithully
flat and quasi-compact).

5) The fpqc site. The abbereviation fpqc is for “fidèlement plat et quasi-compact”.
In the original definition in SGA fpqc meant exactly what it says, namely, a map
is fpqc if it is faithfully flat and quasi-compact. One problem with this is that a
Zariski cover—if consisting of a disjoint union of infinite open immersions—need
not be quasi-compact. Following Kleiman’s suggestion, Vistoli has the following
definition [FGA-ICTP, Def. 2.34, p. 28]. We say that a map of schemes f : X → Y
is fpqc if it is faithfully flat (or simply flat) and every quasi-compact open subset
of Y is the image of a quasi-compact open subset of X. One checks (this may be
asked in your HW or mid-term take home) that f : X → Y being fpqc is equivalent
to any of the following conditions:
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(1) The map f is faithfully flat (or simply flat) and there exists a covering (in
the classical sense of the term) {Vi} of Y by open affine subschemes, such
that each Vi is the image of a quasi-compact open subset of X.

(2) The map f is faithfully flat and given a point x ∈ X, there exists an open
neighborhood U of x in X such that f(U) us open in Y , and the restriction
U → f(U) induced by f is a quasi-compact map.

(3) The map f is faithfully flat and given a point x ∈ X, there exists an open
neighborhood U if x in X such that f(U) is open and affine in Y .

6) The faithfully flat and finitely presented site. Coverings are jointly faithfully
flat and finitely presented, a notion which we now define. Recall that a map of
rings ϕ : A → B is called finitely presented if B is generated as an A-algebra by a
finite number of elements, and the ideal relations between the generators is finitely
generated. In other words, ϕ factors as

A→ A[X1, . . . , Xn] � B.

for some n (the “two-headed” arrow denotes a set-theoretic surjection) and the
kernel A[X1, . . . , Xn] � B is a finitely generated ideal. One can therefore make
sense of locally finitely presented maps of schemes. A map of schemes X → Y is
said to be finitely presented if it is locally finitely presented, quasi compact and
if it is quasi-separated, i.e., if its diagonal morphism δ : X → X ×Y X is also
quasi-compact. One checks that the two notions of finite presentation on maps
of affine schemes (one coming from the algebra definition and the other from the
schemes definition) coincide. For this one notes that a map of affine schemes is
always quasi-compact and quasi-separated. This reduces the problem to showing
that local finite presentation and finite presentation are equivalent concepts for a
map of rings A→ B. See [EGA, Corollaire (6.3.9), p. 306] for details.

7) The fppf site. The abbreviation fppf is for “fidèlement plat et de présentation
finie”. Coverings {Ui → U} are jointly faithfully flat and locally of finite presenta-
tion. [FGA-ICTP, Example 2.32, p. 27].

Remark 1.1. Confusingly, Example 4) above is often called the fpqc-site and
Example 6) the fppf-site. This however doesn’t take into account compatibility
issues with Zariski coverings (which need not be jointly quasi-compact). I will
follow Kleiman and Vistoli’s lead in these matters, and reserve fpqc and fppf for
5) and 7) above respectively. Note that using the definitions in 5) and 7) a Zariski
covering is a legitimate covering in the fpqc and in the fppf topology. In other
words fppf and fpqc (as we have defined them) are finer topologies than the Zariski
topology, but this is not so for the topologies defined by 4) and 6) above. The
traditional way of getting around this to make a distinction between sheaves on the
fpqc (resp. fppf) topology and fpqc-sheaves (resp. fppf-sheaves). In greater detail,
let the topology defined in 4) (resp. 6)) above be called fpqc1 (resp. fppf1). Then,
according to [BLR, § 8.1], a presheaf F on Sch/S is an fpqc-sheaf (resp. fppf-sheaf)

if it is an fpqc1-sheaf as well as a Zariski-sheaf (resp. an fppf1-sheaf as well as a
Zariski sheaf). Since it is not hard to see that the topology generated by fpqc1 and
the Zariski topology is the fpqc-topology, and the analogous statament for the fppf
situation is also easy to see, one notes that F is an fppf-sheaf (resp. fppf-sheaf) by
our definition if and only if it so by the definition in [BLR]. Compare with [BLR,
§ 8.1, pp. 199—201]
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2. Sheaves without topology - an alternate approach

Definition 2.1. Let M be a collection of maps in Sch/S which are stable under
compositions, base change, and which contains all isomorphisms. An M-sheaf is a
functor (i.e. a presheaf)

F :
(
Sch/S

) ◦ → (Sets)

such that

(1) F (
∐
αXα) =

∏
α F (Xα). (Presheaves satisfying this condition are called

prepared presheaves.)
(2) Given T ′ → T in M, with T ′′ := T ′ ×T T ′, pi : T ′′ → T ′, i = 1, 2 the

projections, the sequence of sets

F (T )→ F (T ′)
p∗1
⇒
p∗2

F (T ′′)

is exact. (Here, as usual, p∗i := F (pi), i = 1, 2.)

The exactness of the sequence of sets in (2) above means that if an element ξ ∈
F (T ′) satisfies the equation p∗1(ξ) = p∗2(ξ) then there is unique element ζ ∈ F (T )
such that ξ is the pullback of ζ under T ′ → T .

2.2. Examples. All collections below are collections of maps in Sch/S .

(1) MZar consists of surjective maps T ′ → T such that T ′ =
∐
α Tα and the

restriction Tα → T of T ′ → T is an open immersion for each α.
(2) Mét consists of étale surjective maps.
(3) Mfppc consists of fppf maps.
(4) Mfpqc consists of fpqc maps.

There are two advantages to this approach, namely (a) one does not have to define
a Grothendieck topology on Sch/S , and yet can do sheaf theory, and (b) coverings
occur only in the form of a single map in M.

Remark 2.2.1. M as above gives a topology on Sch/S , namely the topology such
that {Ui → U} is a covering if and only if it is jointly in M, i.e.,

∐
i Ui → U is in

M.

3. Sheafification in the M-topology for prepared presheaves

For p : T ′ → T in M, the symbols T ′′, p1, p2 etc will have their usual meaning.
Let

F :
(
Sch/S

) ◦ → (Sets)

be a functor such that F (
∐
αXα) =

∏
α F (Xα).

Let T ∈ Sch/S . Consider pairs θ = (T ′
p−→ T, ξ) such that p : T ′ → T is in M,

ξ ∈ F (T ′), which satisfy the property that there exists a map q : T̃ → T ′′ in M
such that q∗p∗1ξ = q∗p∗2ξ.

T̃
q

��@
@@

@@
@@

@

T ′′

p1

��

p2 // T ′

p

��
T ′

p
// T
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Suppose θ1 = (T1 → T, ξ1) and θ2 = (T2 → T, ξ2) are two such pairs. We say θ1 is

equivalent to θ2, if there exists a map T̃ → T1×T T2 in M such that the pull backs

of ξ1 and ξ2 to T̃ are the same under the two composites:

T̃ → T1 ×T T2 → T1

T̃ → T1 ×T T2 → T2.

Define F+(T ) to be the “set” of “equivalence classes” of such pairs θ = (T ′ →
T, ξ). The issues of logic that crop up are solved by fixing universes. However, the
answers depend on the universe so fixed. Thankfully this poses no problem for the
fppf, étale, and Zariski topologies on Sch/S .

Clearly, if ξ ∈ F (T ) then θξ = (T
1T−−→ T, ξ) is a pair of the kind being considered.

Moreover θ′ = (T ′
p−→ T, ξ′) is equivalent to θ if and only if q ◦ ξ′ = q ◦p∗ξ for a

map q : T̃ → T ′ in M. We thus have an obvious map of presheaves uF : F → F+.
It is easy to check that if G is an M-sheaf on Sch/S and ϕ : F → G is a map of pre

sheaves, then there exists a unique map ϕ+ : F+ → G such that ϕ+ ◦uF = ϕ.
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