LECTURE 4

1. Descent for quasi-coherent sheaves on a scheme

1.1. For any scheme Z, let $q-\operatorname{coh}_{Z}$ denote the category of quasi-cohenrent $\mathscr{O}_{Z^{-}}$ modules. Let $f: X^{\prime} \rightarrow X$ be a map of schemes. We have a cartesian square (with $X^{\prime \prime}=X^{\prime} \times_{X} X^{\prime}$ and $p_{1}, p_{2}: X^{\prime \prime} \rightrightarrows X$ the two projection):

Setting $X^{\prime \prime \prime}$ equal to $X^{\prime} \times_{X} X^{\prime} \times_{X} X^{\prime}$ and p_{12}, p_{13}, and p_{23} equal to the obvious three projection maps $X^{\prime \prime \prime} \rightarrow X^{\prime \prime}$ given by the formulae $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}\right)$, $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{3}\right)$, and $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{2}, x_{3}\right)$ respectively, we have the following three dimensional diagram with each of the six faces being cartesian:

The definitions of the various $p_{i j}$ then imply:

$$
\begin{aligned}
& p_{1} \circ p_{12}=p_{1} \circ p_{13} \\
& p_{2} \circ p_{12}=p_{1} \circ p_{23} \\
& p_{2} \circ p_{13}=p_{2} \circ p_{23}
\end{aligned}
$$

Definition 1.1.1. Let $\mathscr{G} \in \mathrm{q}-\operatorname{coh}_{X^{\prime}}$. A descent datum (on \mathscr{G}) with respect to $X^{\prime} \xrightarrow{f} X$ is an isomorphism

$$
\varphi: p_{2}^{*} \mathscr{G} \xrightarrow{\sim} p_{1}^{*} \mathscr{G}
$$

such that the cocycle relation

$$
\begin{equation*}
p_{12}^{*}(\varphi) \circ p_{23}^{*}(\varphi)=p_{13}^{*}(\varphi) \tag{1.1.1.1}
\end{equation*}
$$

[^0]holds, i.e., such that the diagram

commutes.
One can, in an obvious way, make a category out of quasi-coherent sheaves on X^{\prime} with descent data withe respect to f. Denote by q-coh $X_{X^{\prime} \rightarrow X}\left(\right.$ or $\left.^{\text {q }}-\operatorname{coh}_{f}\right)$ the category whose objects are pairs (\mathscr{G}, φ), where $\mathscr{G} \in \mathrm{q}-\operatorname{coh}_{X^{\prime}}$ and φ is a descent datum on \mathscr{G}. Moreover, with above notations, if $\mathscr{F} \in q-\operatorname{coh}_{X}$, then the natural isomorphism (in fact an identity by our conventions implicit in (3.1.1.2) above)
$$
\varphi_{\mathscr{F}}^{f}\left(=\varphi_{\mathscr{F}}\right): p_{2}^{*} f^{*} \mathscr{F} \xrightarrow{\sim} p_{1}^{*} f^{*} \mathscr{F}
$$
is a descent datum on $f^{*} \mathscr{F}$. Clearly the assignment $\mathscr{F} \mapsto\left(f^{*} \mathscr{F}, \varphi_{\mathscr{F}}\right)$ is functorial in $\mathscr{F} \in \mathrm{q}-\mathrm{coh}_{X}$. Let
\[

$$
\begin{equation*}
F: \mathrm{q}^{-\operatorname{coh}_{X}} \rightarrow \mathrm{q}-\operatorname{coh}_{\left(X^{\prime} \rightarrow X\right)} \tag{1.1.2}
\end{equation*}
$$

\]

denote the resulting functor. Theorem 2.1.1 can be (obviously) restated as: Let $f: X^{\prime} \rightarrow X$ be a faithfully flat map of affine schemes. Then the functor F in (3.1.2) is an equivalence of categories.
1.2. To generalize the above statement to situations beyond maps of affine schemes, we need to recall that a scheme is called quasi-compact if every open cover has a finite subcover. Every affine scheme (noetherian or not) is quasi-compact. A map of schemes $f: X \rightarrow Y$ is said to be quasi-compact if the inverse image of a quasi-compact set is quasi-compact. We will show later in this lecture that the natural transformation $F: \mathrm{q}-\operatorname{coh}_{X} \rightarrow \mathrm{q}-\operatorname{coh}_{\left(X^{\prime} \rightarrow X\right)}$ of (3.1.2) is an equivalence of categories whenever $f: X^{\prime} \rightarrow X$ is a faithfully flat quasi-compact map. The quasicompactness assumption allows us to reduce to the affine case. As a first step we will now show that F is a fully faithful functor under these hypotheses. This means that if $f: X^{\prime} \rightarrow X$ is quasi-compact and faithfully flat, \mathscr{F} and \mathscr{G} quasi-coherent sheaves on X, and

$$
\beta:\left(f^{*} \mathscr{F}, \varphi_{\mathscr{F}}\right) \rightarrow\left(f^{*} \mathscr{G}, \varphi_{\mathscr{G}}\right)
$$

a map in $\mathrm{q}-\operatorname{coh}_{\left(X^{\prime} \rightarrow X\right)}$, then there is a unique map $\alpha: \mathscr{F} \rightarrow \mathscr{G}$ in $\mathrm{q}-\mathrm{coh}_{X}$ such that $f^{*} \alpha=\beta$. The question is local on X by the uniqueness assertion. Therefore, without loss of generality, we may assume that $X=\operatorname{Spec} A$. Quasi-compactness of f then implies that X^{\prime} can be covered by a finite number of affine open subschemes $X_{\alpha}^{\prime}=\operatorname{Spec} B_{\alpha}$ of X^{\prime}. Since the collection of indices α is finite, the scheme \bar{X}^{\prime} given by $\bar{X}^{\prime}:=\coprod_{\alpha} X_{\alpha}^{\prime}$ is affine. In fact $\bar{X}^{\prime}=\operatorname{Spec}\left(\prod_{\alpha} B_{\alpha}\right)$. Let $\pi: \bar{X}^{\prime} \rightarrow X^{\prime}$ be the natural map and $\bar{f}: \bar{X}^{\prime} \rightarrow X$ the composite $f \circ \pi$. In other words we have a
commutative diagram

and every arrow in the above diagram is a faithfully flat quasi-compact map. To lighten notation we write Z and \bar{Z} for $X^{\prime} \times_{X} X^{\prime}$ and $\bar{X}^{\prime} \times_{X} \bar{X}^{\prime}$ respectively (rather than the more familiar $X^{\prime \prime}$ and $\bar{X}^{\prime \prime}$) and let $p_{1}, p_{2}: Z \rightrightarrows X^{\prime}$, and $\bar{p}_{1}, \bar{p}_{2}: \bar{Z} \rightrightarrows \bar{X}^{\prime}$ be the projections. We then have maps $q: Z \rightarrow X$ and $\bar{q}: \bar{Z} \rightarrow X$ given by the compsites $q=f \circ p_{1}=f \circ p_{2}$ and $\bar{q}=\bar{f} \circ \bar{p}_{1}=\bar{f} \circ \bar{p}_{2}$. For $\mathscr{F}, \mathscr{G} \in \mathrm{q}-\mathrm{coh}_{X}$ we have the following commutative diagram.

The bottom row is exact since $\bar{f}: \bar{X}^{\prime} \rightarrow X$ is a map of affine schemes, whence Theorem 2.1.1 applies. To show that the functor F of (3.1.2) is fully faithful, we have to show that the top row is also exact. Since π and $\pi \times \pi$ are faithfully flat, the downward arrows are injective (see Remark ??, esp. towards the end), whence the top row is exact.

Assuming Theorem 2.1.1, we are now in a position to prove:
Theorem 1.2.1. Let $f: X^{\prime} \rightarrow X$ be a faithfully flat quasi-compact map of schemes. Then the functor $F: \mathrm{q}-\mathrm{coh}_{X} \rightarrow \mathrm{q}-\mathrm{coh}_{\left(X^{\prime} \rightarrow X\right)}$ of (3.1.2) is an equivalence of categories.

Proof. The question is local on X as can be checked (exercise). Therefore, without loss of generality, we may assume $X=\operatorname{Spec} A$. Since f is quasi-compact and affine schemes are quasi-compact, as before X^{\prime} is quasi-compact, and we can cover X^{\prime} by a finite number of affine open subschemes $X_{\alpha}^{\prime}=\operatorname{Spec} B_{\alpha}$ of X^{\prime}. As before, let \bar{X}^{\prime} be the affine scheme $\bar{X}^{\prime}:=\coprod_{\alpha} X_{\alpha}^{\prime}$. Let $\pi, \bar{f}, p_{i}, \bar{p}_{i}, i=1,2, q$, and \bar{q} be as in the proof of the full faithfulness of F above.

We have canonical maps

$$
\bar{X}^{\prime} \times_{X^{\prime}} \bar{X}^{\prime} \xrightarrow{\delta} \bar{X}^{\prime} \times_{X} \bar{X}^{\prime} \xrightarrow{\pi \times \pi} X^{\prime} \times_{X} X^{\prime}
$$

If $(\mathscr{G}, \varphi) \in \mathrm{q}-\operatorname{coh}_{\left(X^{\prime} \rightarrow X\right)}$, then one checks that $\left(\pi^{*} \mathscr{G},(\pi \times \pi)^{*} \varphi\right)$ is a descent datum for the map $\bar{f}: \bar{X}^{\prime} \rightarrow X$. Moreover, using the fact that φ restricted to the diagonal $X^{\prime} \hookrightarrow X^{\prime} \times_{X} X^{\prime}$ is the identity map on \mathscr{G}, one checks that

$$
\begin{equation*}
\delta^{*}(\pi \times \pi)^{*} \varphi=\varphi_{\mathscr{G}}^{\pi} \tag{1.2.1.1}
\end{equation*}
$$

Since \bar{f} is a map of affine schemes, by Theorem 2.1.1 ${ }^{1}$, the quasi-coherent sheaf $\pi^{*} \mathscr{G}$ descends to $\mathscr{F} \in$ q-coh ${ }_{X}$, and we can identify $\left(\bar{f}^{*} \mathscr{F}, \varphi_{\mathscr{F}}^{\bar{f}}\right)$ with the descent datum $\left(\pi^{*} \mathscr{G},(\pi \times \pi)^{*} \varphi\right)$. Applying δ^{*} to this identification, we get an identification of descent data with respect to the map $\pi: \bar{X}^{\prime} \rightarrow X^{\prime}$. In greater detail, the descent datum $\delta^{*} \varphi_{\mathscr{F}}^{\bar{f}}$ on $\bar{f}^{*} \mathscr{F}\left(=\pi^{*} f^{*} \mathscr{F}\right)$ identifies with $\delta^{*}(\pi \times \pi)^{*} \varphi$ on $\pi^{*} \mathscr{G}$. Now, $\delta^{*} \varphi_{\mathscr{F}}^{\bar{f}}=$

[^1]$\varphi_{f^{*} \mathscr{F}}^{\pi}$. Using this and (3.2.1.1) we obtain an isomorphism $f^{*} \mathscr{F} \xrightarrow{\sim} \mathscr{G}$ by the full faithfulness of the functor $\mathscr{K} \mapsto\left(\pi^{*} \mathscr{K}, \varphi_{\mathscr{K}}^{\pi}\right)$ on q-coh $X_{X^{\prime}}$ as proven in the discussion at the beginning of Subsection 3.2. ${ }^{2}$ It remains to identify $\varphi_{\mathscr{F}}^{f}$ with φ under the just deduced isomorphism $f^{*} \mathscr{F} \xrightarrow{\sim} \mathscr{G}$. According Remark ?? this can be checked after applying $(\pi \times \pi)^{*}$ since $\pi \times \pi$ is faithfully flat. Doing this yields the original identification $\left(\bar{f}^{*} \mathscr{F}, \varphi_{\mathscr{F}}^{\bar{f}}\right) \xrightarrow{\sim}\left(\pi^{*} \mathscr{G},(\pi \times \pi)^{*} \varphi\right)$, whence $\left(f^{*} \mathscr{F}, \varphi_{\mathscr{F}}^{f}\right) \xrightarrow{\sim}(\mathscr{G}, \varphi)$. It is clear that the process $(\mathscr{G}, \varphi) \mapsto \mathscr{F}$ is functorial in $(\mathscr{G}, \varphi) \in \mathrm{q}-\operatorname{coh}_{\left(X^{\prime} \rightarrow X\right)}$ and by its "construction" gives a pseudo-inverse to the functor F.

Thus the affine case of Theorem 3.2.1 namely Theorem 2.1.1 implies the general case, and we are done.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ $(1956 / 57), 182(1958 / 59), 190(1959 / 60), 195(1959 / 60), 212(1960 / 61), 221(1960 / 61), 232$ (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] __ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^2]
[^0]: Date: August 29, 2012.

[^1]: ${ }^{1}$ To be proved in the next lecture

[^2]: ${ }^{2}$ Note that π is quasi-compact and faithfully flat.

