LECTURE 4

1. Descent for quasi-coherent sheaves on a scheme

1.1. For any scheme Z, let $q\operatorname{-coh}_Z$ denote the category of quasi-cohenrent \mathscr{O}_Z -modules. Let $f: X' \to X$ be a map of schemes. We have a cartesian square (with $X'' = X' \times_X X'$ and $p_1, p_2: X'' \rightrightarrows X$ the two projection):

$$\begin{array}{c|c} X'' & \xrightarrow{p_2} & X' \\ p_1 & & \downarrow \\ p_1 & & \downarrow \\ X' & \xrightarrow{f} & X \end{array}$$

Setting X''' equal to $X' \times_X X' \times_X X'$ and p_{12} , p_{13} , and p_{23} equal to the obvious three projection maps $X''' \to X''$ given by the formulae $(x_1, x_2, x_3) \mapsto (x_1, x_2)$, $(x_1, x_2, x_3) \mapsto (x_1, x_3)$, and $(x_1, x_2, x_3) \mapsto (x_2, x_3)$ respectively, we have the following three dimensional diagram with each of the six faces being cartesian:

The definitions of the various p_{ij} then imply:

$$\begin{split} p_1 \circ p_{12} &= p_1 \circ p_{13} \\ p_2 \circ p_{12} &= p_1 \circ p_{23} \\ p_2 \circ p_{13} &= p_2 \circ p_{23}. \end{split}$$

Definition 1.1.1. Let $\mathscr{G} \in \operatorname{q-coh}_{X'}$. A descent datum (on \mathscr{G}) with respect to $X' \xrightarrow{f} X$ is an isomorphism

$$\varphi \colon p_2^* \mathscr{G} \xrightarrow{\sim} p_1^* \mathscr{G}$$

such that the cocycle relation

(1.1.1.1)
$$p_{12}^{*}(\varphi) \circ p_{23}^{*}(\varphi) = p_{13}^{*}(\varphi)$$

Date: August 29, 2012.

holds, i.e., such that the diagram

commutes.

One can, in an obvious way, make a category out of quasi-coherent sheaves on X' with descent data with respect to f. Denote by $\operatorname{q-coh}_{X'\to X}$ (or $\operatorname{q-coh}_f$) the category whose objects are pairs (\mathscr{G}, φ) , where $\mathscr{G} \in \operatorname{q-coh}_{X'}$ and φ is a descent datum on \mathscr{G} . Moreover, with above notations, if $\mathscr{F} \in \operatorname{q-coh}_X$, then the natural isomorphism (in fact an identity by our conventions implicit in (3.1.1.2) above)

$$\varphi^f_{\mathscr{F}}(=\varphi_{\mathscr{F}})\colon p_2^*f^*\mathscr{F} \xrightarrow{\sim} p_1^*f^*\mathscr{F}$$

is a descent datum on $f^*\mathscr{F}$. Clearly the assignment $\mathscr{F} \mapsto (f^*\mathscr{F}, \varphi_{\mathscr{F}})$ is functorial in $\mathscr{F} \in \operatorname{q-coh}_X$. Let

(1.1.2)
$$F: \operatorname{q-coh}_X \to \operatorname{q-coh}_{(X' \to X)}$$

denote the resulting functor. Theorem 2.1.1 can be (obviously) restated as: Let $f: X' \to X$ be a faithfully flat map of affine schemes. Then the functor F in (3.1.2) is an equivalence of categories.

1.2. To generalize the above statement to situations beyond maps of affine schemes, we need to recall that a scheme is called quasi-compact if every open cover has a finite subcover. Every affine scheme (noetherian or not) is quasi-compact. A map of schemes $f: X \to Y$ is said to be quasi-compact if the inverse image of a quasi-compact set is quasi-compact. We will show later in this lecture that the natural transformation $F: q \operatorname{-coh}_X \to q \operatorname{-coh}_{(X' \to X)}$ of (3.1.2) is an equivalence of categories whenever $f: X' \to X$ is a faithfully flat quasi-compact map. The quasi-compactness assumption allows us to reduce to the affine case. As a first step we will now show that F is a fully faithful functor under these hypotheses. This means that if $f: X' \to X$ is quasi-compact and faithfully flat, \mathscr{F} and \mathscr{G} quasi-coherent sheaves on X, and

$$\beta \colon (f^*\mathscr{F}, \varphi_{\mathscr{F}}) \to (f^*\mathscr{G}, \varphi_{\mathscr{G}})$$

a map in $q\operatorname{-coh}_{(X'\to X)}$, then there is a unique map $\alpha \colon \mathscr{F} \to \mathscr{G}$ in $q\operatorname{-coh}_X$ such that $f^*\alpha = \beta$. The question is local on X by the uniqueness assertion. Therefore, without loss of generality, we may assume that $X = \operatorname{Spec} A$. Quasi-compactness of f then implies that X' can be covered by a finite number of affine open subschemes $X'_{\alpha} = \operatorname{Spec} B_{\alpha}$ of X'. Since the collection of indices α is finite, the scheme \bar{X}' given by $\bar{X}' := \coprod_{\alpha} X'_{\alpha}$ is affine. In fact $\bar{X}' = \operatorname{Spec} (\prod_{\alpha} B_{\alpha})$. Let $\pi \colon \bar{X}' \to X'$ be the natural map and $\bar{f} \colon \bar{X}' \to X$ the composite $f \circ \pi$. In other words we have a

commutative diagram

and every arrow in the above diagram is a faithfully flat quasi-compact map. To lighten notation we write Z and \overline{Z} for $X' \times_X X'$ and $\overline{X}' \times_X \overline{X}'$ respectively (rather than the more familiar X" and $\overline{X}"$) and let $p_1, p_2: Z \rightrightarrows X'$, and $\overline{p}_1, \overline{p}_2: \overline{Z} \rightrightarrows \overline{X}'$ be the projections. We then have maps $q: Z \to X$ and $\overline{q}: \overline{Z} \to X$ given by the compsites $q = f \circ p_1 = f \circ p_2$ and $\overline{q} = \overline{f} \circ \overline{p}_1 = \overline{f} \circ \overline{p}_2$. For $\mathscr{F}, \mathscr{G} \in \operatorname{q-coh}_X$ we have the following commutative diagram.

The bottom row is exact since $\overline{f} \colon \overline{X}' \to X$ is a map of affine schemes, whence Theorem 2.1.1 applies. To show that the functor F of (3.1.2) is fully faithful, we have to show that the top row is also exact. Since π and $\pi \times \pi$ are faithfully flat, the downward arrows are injective (see Remark ??, esp. towards the end), whence the top row is exact.

Assuming Theorem 2.1.1, we are now in a position to prove:

Theorem 1.2.1. Let $f: X' \to X$ be a faithfully flat quasi-compact map of schemes. Then the functor $F: q\operatorname{-coh}_X \to q\operatorname{-coh}_{(X'\to X)}$ of (3.1.2) is an equivalence of categories.

Proof. The question is local on X as can be checked (exercise). Therefore, without loss of generality, we may assume X = Spec A. Since f is quasi-compact and affine schemes are quasi-compact, as before X' is quasi-compact, and we can cover X' by a finite number of affine open subschemes $X'_{\alpha} = \text{Spec } B_{\alpha}$ of X'. As before, let \bar{X}' be the affine scheme $\bar{X}' := \coprod_{\alpha} X'_{\alpha}$. Let $\pi, \bar{f}, p_i, \bar{p}_i, i = 1, 2, q$, and \bar{q} be as in the proof of the full faithfulness of F above.

We have canonical maps

$$\bar{X}' \times_{X'} \bar{X}' \xrightarrow{\delta} \bar{X}' \times_X \bar{X}' \xrightarrow{\pi \times \pi} X' \times_X X'.$$

If $(\mathscr{G}, \varphi) \in \operatorname{q-coh}_{(X' \to X)}$, then one checks that $(\pi^*\mathscr{G}, (\pi \times \pi)^*\varphi)$ is a descent datum for the map $\overline{f} : \overline{X'} \to X$. Moreover, using the fact that φ restricted to the diagonal $X' \hookrightarrow X' \times_X X'$ is the identity map on \mathscr{G} , one checks that

(1.2.1.1)
$$\delta^*(\pi \times \pi)^* \varphi = \varphi_{\mathscr{G}}^{\pi}$$

Since \bar{f} is a map of affine schemes, by Theorem 2.1.1¹, the quasi-coherent sheaf $\pi^*\mathscr{G}$ descends to $\mathscr{F} \in \operatorname{q-coh}_X$, and we can identify $(\bar{f}^*\mathscr{F}, \varphi_{\mathscr{F}}^{\bar{f}})$ with the descent datum $(\pi^*\mathscr{G}, (\pi \times \pi)^*\varphi)$. Applying δ^* to this identification, we get an identification of descent data with respect to the map $\pi \colon \bar{X}' \to X'$. In greater detail, the descent datum $\delta^*\varphi_{\mathscr{F}}^{\bar{f}}$ on $\bar{f}^*\mathscr{F}(=\pi^*f^*\mathscr{F})$ identifies with $\delta^*(\pi \times \pi)^*\varphi$ on $\pi^*\mathscr{G}$. Now, $\delta^*\varphi_{\mathscr{F}}^{\bar{f}} =$

¹To be proved in the next lecture

LECTURE 4

 $\varphi_{f^*\mathscr{F}}^{\pi}$. Using this and (3.2.1.1) we obtain an isomorphism $f^*\mathscr{F} \xrightarrow{\sim} \mathscr{G}$ by the full faithfulness of the functor $\mathscr{K} \mapsto (\pi^*\mathscr{K}, \varphi_{\mathscr{K}}^{\pi})$ on $\operatorname{q-coh}_{X'}$ as proven in the discussion at the beginning of Subsection 3.2.² It remains to identify $\varphi_{\mathscr{F}}^{f}$ with φ under the just deduced isomorphism $f^*\mathscr{F} \xrightarrow{\sim} \mathscr{G}$. According Remark ?? this can be checked after applying $(\pi \times \pi)^*$ since $\pi \times \pi$ is faithfully flat. Doing this yields the original identification $(\overline{f}^*\mathscr{F}, \varphi_{\mathscr{F}}^{f}) \xrightarrow{\sim} (\pi^*\mathscr{G}, (\pi \times \pi)^*\varphi)$, whence $(f^*\mathscr{F}, \varphi_{\mathscr{F}}^{f}) \xrightarrow{\sim} (\mathscr{G}, \varphi)$. It is clear that the process $(\mathscr{G}, \varphi) \mapsto \mathscr{F}$ is functorial in $(\mathscr{G}, \varphi) \in \operatorname{q-coh}_{(X' \to X)}$ and by its "construction" gives a pseudo-inverse to the functor F.

Thus the affine case of Theorem 3.2.1 namely Theorem 2.1.1 implies the general case, and we are done.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no[°] 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

²Note that π is quasi-compact and faithfully flat.