LECTURE 3

1. From the last lecture

1.1. Recall the Cech complex Cp)4(M) for an A-module M:

(1.1.1) 0 M Boa ML B2g, MLy
A Ber g, M L BErt g Y
where d” = ".(—1)%; and
eibp®@ Qb M) =0, - Rb;_1®1Rb;®...b. @m.
For consistency we set d~! = ap; and B®? = A. The usual arguments give
d"od "1 =0, r>0

We showed that this complex is exact. Moreover, we note that d°: B®4 M —
B®?2 ®4 M is given by b@m — 1@ b® m —b® 1 ® m. Indeed, by definition,
d’ = ey —e; where eg(b@m) =1®b®@m and e;(b®@m) = b® 1 ®m. It follows
that

(1.1.2) M =ker (e — €1)

2. Proof of faithful flat descent for affine schemes

2.1. The reader is now expected to look up the definition of a descent datum for a
faithfully flat map of rings A — B from the previous lecture. We will now prove:

Theorem 2.1.1. Suppose B is faithfuly flat over A. Then the functor F: Mod 4 —
Mod 4 _, g defined above is an equivalence of categories.

Theorem 2.1.1 asserts that for a B-module N to be of the form B ® 4 M for
some A-module M, it is necessary and sufficent for N to carry a descent datum
P: N®4 B = B®4 N. In this case the module M € Mod, is unique up to
isomorphism. In fact, as we will see later,

M={neN|[l®n=9¢na1)}.
The proof of loc.cit. is not difficult, being essentially a familiar Cech cohomology

argument, suitably modified to the faithfully flat situation.

Date: August 27, 2012.



9 LECTURE 3

2.2. Now suppose (N, 1) is a descent datum on B/A. Let « and 8 be the maps
a: N — B®aN, n—1Qn;
B: N — B®y N, n—=Ynel1).
Define
(2.2.1) M := ker (o — ).
We claim that there is an isomorphism
0(=0ny): (B®a M, Yy) = (N, )

in Moda—, g, where ¥pr: (B®4 M) ®4 B — B®4 (B®a M) is the map given by
bdm®b — bl ®m (cf. PropositionI1.2.2.3). Note that the claim implies, in
particular, that N 2 B®4 M.

Let 0: B4 M — N be b®m — bf(m), where

fiM—N

is the natural inclusion map of A-modules. It is clear that  is functorial in (N, )
(since a and B are). We leave it to the reader to check that 6 is a map of descent
data, i.e., to check that the diagram

B®AM®AB&>N®AB

| k

B@AB@AMWB@AN

commutes using the fact that by definition of M, 1 ® f(m) =¢(f(m) ®1).
Next, as in Picard I, let tpr: M ® 4 B — B ® 4 M be the natural map given by
m ® b+ b®m. Consider the diagram with exact rows

OHM®A34>N®AB%(B®AN)®AB

(D) OOLMl % lwl

0 N T B®ANO—>B®AB®AN

d-=ay d"=ep—e;
where 1 (b@n®bV) = bR Y(n @) (cf. 11.(2.2.1)). The rows of (D) are exact

for the following reasons. First, by definition of M, 0 — M — N LNy ®a N
is exact, and tensoring this with the flat A-algebra B gives us the top row of (D).
The exactness of the bottom row of (D) follows from the exactness of C'% 4 (V).

We claim that (D) commutes. As, before, it is convenient to denote the M in N
by f: M — N. We leave the commutatvity of the rectangle on the left to the reader.
The following two facts are helpful for this. First, the image of m®b € M ® 4 B in
B®4 N under the “south followed by east” route is 1 @ b(f(m)) € B®4 N. To see
this is also the image under the “east followed by south” route, use the fact that
is a B®2-module map, whence ¥ ((1 ® b)x) = (1 ® b)i(x).

The commutativity of the rectangle on the right uses the co-cycle rule namely

(2.2.2) 1 othy = 1o

which is the requirement for ) to be a descent datum on N. Recall from I1.(2.2.1)
that ¥3(n @by ®@b2) =1(n ®b1) @by and Yo (n @V @) = > b}, @V @ n}, where



LECTURE 3 3

Yoo bh®@ny =1 (n®b). In particular (with b’ = 1 in the above formula for 1)3) we
have

Pa(n@1@b) =) b,olen,

(2.2.3) =e1() b, @ny)
= (e10y)(n®b).

We will show that

(i) Yro(a®1) =egot

and

(i) Y1o(B®@1) =erot.

The relation (i) is easy since a(n) =1®n and eg(b®n) = 1 ®@ b®@n. We leave the
details to the reader. The relation (ii) is trickier. Here are the details for (ii).

Yre(B@1)(n®b) =1 (B(n) @)

=1(¥(n®1)®b)
=11 (P3(n®1®D))
=Y10Y3(n®1®Db)
=1 (n®@1®0b) (by (2.2.2))
=e109(n®b) (by (2.2.3))
In view of (i) and (ii) we get ¥10((a — 8) ® 1) = (ep — e1) op. Thus the rectangle

on the right in diagram (D) commutes. Since the rows of (D) are exact and 1 and
1 are isomorphisms, 6otys, whence 6, is also an isomorphism.

Clearly the assignment (N, 1) — M is functorial in (N, ¢) € Moda_. 5. More-
over, it is evident from the above discussion, as well as (1.1.2) and (2.2.1), that
it provides a pseudo-inverse to the functor M +— (B ® 4 M, ¢,,) on Mod4. This
completes the proof of Theorem 2.1.1. O

Remark 2.2.4. Compare the above with the proof of gluing of sheaves.
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