LECTURE 3

1. From the last lecture

1.1. Recall the Čech complex $C_{B / A}^{\bullet}(M)$ for an A-module M :

$$
\begin{align*}
& 0 \rightarrow M \xrightarrow{\alpha_{M}} B \otimes_{A} M \xrightarrow{d^{0}} B^{\otimes 2} \otimes_{A} M \xrightarrow{d^{1}} \ldots \tag{1.1.1}\\
& \ldots \xrightarrow{d^{r-2}} B^{\otimes r} \otimes_{A} M \xrightarrow{d^{r-1}} B^{\otimes r+1} \otimes_{A} M \xrightarrow{d^{r}} \ldots
\end{align*}
$$

where $d^{r}=\sum_{i}(-1)^{i} e_{i}$ and

$$
e_{i}\left(b_{0} \otimes \cdots \otimes b_{r} \otimes m\right)=b_{o} \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_{i} \otimes \ldots b_{r} \otimes m
$$

For consistency we set $d^{-1}=\alpha_{M}$ and $B^{\otimes 0}=A$. The usual arguments give

$$
d^{r} \circ d^{r-1}=0, \quad r \geq 0
$$

We showed that this complex is exact. Moreover, we note that $d^{0}: B \otimes_{A} M \rightarrow$ $B^{\otimes 2} \otimes_{A} M$ is given by $b \otimes m \mapsto 1 \otimes b \otimes m-b \otimes 1 \otimes m$. Indeed, by definition, $d^{0}=e_{0}-e_{1}$ where $e_{0}(b \otimes m)=1 \otimes b \otimes m$ and $e_{1}(b \otimes m)=b \otimes 1 \otimes m$. It follows that

$$
\begin{equation*}
M=\operatorname{ker}\left(e_{0}-e_{1}\right) \tag{1.1.2}
\end{equation*}
$$

2. Proof of faithful flat descent for affine schemes

2.1. The reader is now expected to look up the definition of a descent datum for a faithfully flat map of rings $A \rightarrow B$ from the previous lecture. We will now prove:

Theorem 2.1.1. Suppose B is faithfuly flat over A. Then the functor $F: \operatorname{Mod}_{A} \rightarrow$ $\operatorname{Mod}_{A \rightarrow B}$ defined above is an equivalence of categories.

Theorem 2.1.1 asserts that for a B-module N to be of the form $B \otimes_{A} M$ for some A-module M, it is necessary and sufficent for N to carry a descent datum $\psi: N \otimes_{A} B \xrightarrow{\sim} B \otimes_{A} N$. In this case the module $M \in \operatorname{Mod}_{A}$ is unique up to isomorphism. In fact, as we will see later,

$$
M=\{n \in N \mid 1 \otimes n=\psi(n \otimes 1)\}
$$

The proof of loc.cit. is not difficult, being essentially a familiar Čech cohomology argument, suitably modified to the faithfully flat situation.

[^0]2.2. Now suppose (N, ψ) is a descent datum on B / A. Let α and β be the maps
\[

$$
\begin{aligned}
\alpha: N \rightarrow B \otimes_{A} N, & n \mapsto 1 \otimes n \\
\beta: N \rightarrow B \otimes_{A} N, & n \mapsto \psi(n \otimes 1)
\end{aligned}
$$
\]

Define

$$
\begin{equation*}
M:=\operatorname{ker}(\alpha-\beta) \tag{2.2.1}
\end{equation*}
$$

We claim that there is an isomorphism

$$
\theta\left(=\theta_{N, \psi}\right):\left(B \otimes_{A} M, \psi_{M}\right) \xrightarrow{\sim}(N, \psi)
$$

in $\operatorname{Mod}_{A \rightarrow B}$, where $\psi_{M}:\left(B \otimes_{A} M\right) \otimes_{A} B \rightarrow B \otimes_{A}\left(B \otimes_{A} M\right)$ is the map given by $b \otimes m \otimes b^{\prime} \mapsto b \otimes b^{\prime} \otimes m$ (cf. Proposition II.2.2.3). Note that the claim implies, in particular, that $N \cong B \otimes_{A} M$.

Let $\theta: B \otimes_{A} M \rightarrow N$ be $b \otimes m \mapsto b f(m)$, where

$$
f: M \hookrightarrow N
$$

is the natural inclusion map of A-modules. It is clear that θ is functorial in (N, ψ) (since α and β are). We leave it to the reader to check that θ is a map of descent data, i.e., to check that the diagram

commutes using the fact that by definition of $M, 1 \otimes f(m)=\psi(f(m) \otimes 1)$.
Next, as in Picard II, let $\iota_{M}: M \otimes_{A} B \rightarrow B \otimes_{A} M$ be the natural map given by $m \otimes b \mapsto b \otimes m$. Consider the diagram with exact rows

where $\psi_{1}\left(b \otimes n \otimes b^{\prime}\right)=b \otimes \psi\left(n \otimes b^{\prime}\right)$ (cf. II.(2.2.1)). The rows of (D) are exact for the following reasons. First, by definition of $M, 0 \rightarrow M \rightarrow N \xrightarrow{\alpha-\beta} B \otimes_{A} N$ is exact, and tensoring this with the flat A-algebra B gives us the top row of (D). The exactness of the bottom row of (D) follows from the exactness of $C_{B / A}^{\bullet}(N)$.

We claim that (D) commutes. As, before, it is convenient to denote the M in N by $f: M \hookrightarrow N$. We leave the commutatvity of the rectangle on the left to the reader. The following two facts are helpful for this. First, the image of $m \otimes b \in M \otimes_{A} B$ in $B \otimes_{A} N$ under the "south followed by east" route is $1 \otimes b(f(m)) \in B \otimes_{A} N$. To see this is also the image under the "east followed by south" route, use the fact that ψ is a $B^{\otimes 2}$-module map, whence $\psi((1 \otimes b) x)=(1 \otimes b) \psi(x)$.

The commutativity of the rectangle on the right uses the co-cycle rule namely

$$
\begin{equation*}
\psi_{1} \circ \psi_{3}=\psi_{2} \tag{2.2.2}
\end{equation*}
$$

which is the requirement for ψ to be a descent datum on N. Recall from II.(2.2.1) that $\psi_{3}\left(n \otimes b_{1} \otimes b_{2}\right)=\psi\left(n \otimes b_{1}\right) \otimes b_{2}$ and $\psi_{2}\left(n \otimes b^{\prime} \otimes b\right)=\sum_{\alpha} b_{\alpha}^{*} \otimes b^{\prime} \otimes n_{\alpha}^{*}$ where
$\sum_{\alpha} b_{\alpha}^{*} \otimes n_{\alpha}^{*}=\psi(n \otimes b)$. In particular (with $b^{\prime}=1$ in the above formula for ψ_{2}) we have

$$
\begin{align*}
\psi_{2}(n \otimes 1 \otimes b) & =\sum_{\alpha} b_{\alpha}^{*} \otimes 1 \otimes n_{\alpha}^{*} \\
& =e_{1}\left(\sum_{\alpha} b_{\alpha}^{*} \otimes n_{\alpha}^{*}\right) \tag{2.2.3}\\
& =\left(e_{1} \circ \psi\right)(n \otimes b) .
\end{align*}
$$

We will show that

$$
\begin{equation*}
\psi_{1} \circ(\alpha \otimes 1)=e_{0} \circ \psi \tag{i}
\end{equation*}
$$

and
(ii)

$$
\psi_{1} \circ(\beta \otimes 1)=e_{1} \circ \psi
$$

The relation (i) is easy since $\alpha(n)=1 \otimes n$ and $e_{0}(b \otimes n)=1 \otimes b \otimes n$. We leave the details to the reader. The relation (ii) is trickier. Here are the details for (ii).

$$
\begin{array}{rlr}
\psi_{1} \circ(\beta \otimes 1)(n \otimes b) & =\psi_{1}(\beta(n) \otimes b) & \\
& =\psi_{1}(\psi(n \otimes 1) \otimes b) & \\
& =\psi_{1}\left(\psi_{3}(n \otimes 1 \otimes b)\right) & \\
& =\psi_{1} \circ \psi_{3}(n \otimes 1 \otimes b) & \\
& =\psi_{2}(n \otimes 1 \otimes b) & \\
& =e_{1} \circ \psi(n \otimes b) & \\
(\text { by }(2.2 .2)) \\
(\text { by }(2.2 .3))
\end{array}
$$

In view of (i) and (ii) we get $\psi_{1} \circ((\alpha-\beta) \otimes 1)=\left(e_{0}-e_{1}\right) \circ \psi$. Thus the rectangle on the right in diagram (D) commutes. Since the rows of (D) are exact and ψ and ψ_{1} are isomorphisms, $\theta \circ \iota_{M}$, whence θ, is also an isomorphism.

Clearly the assignment $(N, \psi) \mapsto M$ is functorial in $(N, \psi) \in \operatorname{Mod}_{A \rightarrow B}$. Moreover, it is evident from the above discussion, as well as (1.1.2) and (2.2.1), that it provides a pseudo-inverse to the functor $M \mapsto\left(B \otimes_{A} M, \psi_{M}\right)$ on Mod_{A}. This completes the proof of Theorem 2.1.1.
Remark 2.2.4. Compare the above with the proof of gluing of sheaves.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: August 27, 2012.

