
LECTURE 3

1. From the last lecture

1.1. Recall the Čech complex C•B/A(M) for an A-module M :

0→M
αM−−→ B ⊗AM

d0−→ B⊗2 ⊗AM
d1−→ . . .(1.1.1)

. . .
dr−2

−−−→ B⊗r ⊗AM
dr−1

−−−→ B⊗r+1 ⊗AM
dr−→ . . .

where dr =
∑
i(−1)iei and

ei(b0 ⊗ · · · ⊗ br ⊗m) = bo ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . br ⊗m.

For consistency we set d−1 = αM and B⊗0 = A. The usual arguments give

dr ◦dr−1 = 0, r ≥ 0

We showed that this complex is exact. Moreover, we note that d0 : B ⊗AM →
B⊗2 ⊗A M is given by b ⊗ m 7→ 1 ⊗ b ⊗ m − b ⊗ 1 ⊗ m. Indeed, by definition,
d0 = e0 − e1 where e0(b ⊗m) = 1 ⊗ b ⊗m and e1(b ⊗m) = b ⊗ 1 ⊗m. It follows
that

(1.1.2) M = ker (e0 − e1)

2. Proof of faithful flat descent for affine schemes

2.1. The reader is now expected to look up the definition of a descent datum for a
faithfully flat map of rings A→ B from the previous lecture. We will now prove:

Theorem 2.1.1. Suppose B is faithfuly flat over A. Then the functor F : ModA →
ModA→B defined above is an equivalence of categories.

Theorem 2.1.1 asserts that for a B-module N to be of the form B ⊗A M for
some A-module M , it is necessary and sufficent for N to carry a descent datum
ψ : N ⊗A B −→∼ B ⊗A N . In this case the module M ∈ ModA is unique up to
isomorphism. In fact, as we will see later,

M = {n ∈ N | 1⊗ n = ψ(n⊗ 1)}.

The proof of loc.cit. is not difficult, being essentially a familiar Čech cohomology
argument, suitably modified to the faithfully flat situation.
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2.2. Now suppose (N, ψ) is a descent datum on B/A. Let α and β be the maps

α : N → B ⊗A N, n 7→ 1⊗ n;

β : N → B ⊗A N, n 7→ ψ(n⊗ 1).

Define

(2.2.1) M := ker (α− β).

We claim that there is an isomorphism

θ(= θN,ψ) : (B ⊗AM, ψM ) −→∼ (N, ψ)

in ModA→B , where ψM : (B ⊗AM)⊗A B → B ⊗A (B ⊗AM) is the map given by
b ⊗m ⊗ b′ 7→ b ⊗ b′ ⊗m (cf. Proposition II.2.2.3). Note that the claim implies, in
particular, that N ∼= B ⊗AM .

Let θ : B ⊗AM → N be b⊗m 7→ bf(m), where

f : M ↪→ N

is the natural inclusion map of A-modules. It is clear that θ is functorial in (N, ψ)
(since α and β are). We leave it to the reader to check that θ is a map of descent
data, i.e., to check that the diagram

B ⊗AM ⊗A B

ψ
M

��

θ⊗1 // N ⊗A B

ψ

��
B ⊗A B ⊗AM

1⊗θ
// B ⊗A N

commutes using the fact that by definition of M , 1⊗ f(m) = ψ(f(m)⊗ 1).
Next, as in Picard II, let ιM : M ⊗A B → B ⊗AM be the natural map given by

m⊗ b 7→ b⊗m. Consider the diagram with exact rows

(D)

0 // M ⊗A B

θ ◦ ι
M

��

// N ⊗A B

ψ

��

(α−β)⊗1 // (B ⊗A N)⊗A B

ψ1

��
0 // N

d−1=α
N

// B ⊗A N
d0=e0−e1

// B ⊗A B ⊗A N

where ψ1(b ⊗ n ⊗ b′) = b ⊗ ψ(n ⊗ b′) (cf. II.(2.2.1)). The rows of (D) are exact

for the following reasons. First, by definition of M , 0 → M → N
α−β−−−→ B ⊗A N

is exact, and tensoring this with the flat A-algebra B gives us the top row of (D).
The exactness of the bottom row of (D) follows from the exactness of C•B/A(N).

We claim that (D) commutes. As, before, it is convenient to denote the M in N
by f : M ↪→ N . We leave the commutatvity of the rectangle on the left to the reader.
The following two facts are helpful for this. First, the image of m⊗ b ∈M ⊗AB in
B⊗AN under the “south followed by east” route is 1⊗ b(f(m)) ∈ B⊗AN . To see
this is also the image under the “east followed by south” route, use the fact that ψ
is a B⊗2-module map, whence ψ((1⊗ b)x) = (1⊗ b)ψ(x).

The commutativity of the rectangle on the right uses the co-cycle rule namely

(2.2.2) ψ1 ◦ψ3 = ψ2

which is the requirement for ψ to be a descent datum on N . Recall from II.(2.2.1)
that ψ3(n⊗ b1 ⊗ b2) = ψ(n⊗ b1)⊗ b2 and ψ2(n⊗ b′ ⊗ b) =

∑
α b
∗
α ⊗ b′ ⊗ n∗α where
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α b
∗
α ⊗ n∗α = ψ(n⊗ b). In particular (with b′ = 1 in the above formula for ψ2) we

have

ψ2(n⊗ 1⊗ b) =
∑
α

b∗α ⊗ 1⊗ n∗α

= e1(
∑
α

b∗α ⊗ n∗α)(2.2.3)

= (e1 ◦ψ)(n⊗ b).
We will show that

(i) ψ1 ◦ (α⊗ 1) = e0 ◦ψ

and

(ii) ψ1 ◦ (β ⊗ 1) = e1 ◦ψ.

The relation (i) is easy since α(n) = 1⊗ n and e0(b⊗ n) = 1⊗ b⊗ n. We leave the
details to the reader. The relation (ii) is trickier. Here are the details for (ii).

ψ1 ◦ (β ⊗ 1)(n⊗ b) = ψ1(β(n)⊗ b)
= ψ1(ψ(n⊗ 1)⊗ b)
= ψ1(ψ3(n⊗ 1⊗ b))
= ψ1 ◦ψ3(n⊗ 1⊗ b)
= ψ2(n⊗ 1⊗ b) (by (2.2.2))

= e1 ◦ψ(n⊗ b) (by (2.2.3))

In view of (i) and (ii) we get ψ1 ◦ ((α− β)⊗ 1) = (e0 − e1) ◦ψ. Thus the rectangle
on the right in diagram (D) commutes. Since the rows of (D) are exact and ψ and
ψ1are isomorphisms, θ ◦ ιM , whence θ, is also an isomorphism.

Clearly the assignment (N, ψ) 7→ M is functorial in (N, ψ) ∈ ModA→B . More-
over, it is evident from the above discussion, as well as (1.1.2) and (2.2.1), that
it provides a pseudo-inverse to the functor M 7→ (B ⊗A M, ψ

M
) on ModA. This

completes the proof of Theorem 2.1.1. �

Remark 2.2.4. Compare the above with the proof of gluing of sheaves.
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