
LECTURE 23

1. Comments on and solutions to selected problems in the midterm

1.1. Problem 5. Suppose S is a scheme. Let M be a collection of maps in Sch/S
which are stable under compositions, base changes, and which contains all isomor-

phisms. Let F :
(
Sch/S

) ◦ → Sets be a Sets-valued presheaf on Sch/S such that
F (∅) = F, where F our designated terminal object in Sets. Define a topology τ

M

on Sch/S by decreeing that {Ui → U} is a cover if and only if the maps in the
collection are jointly in M. Show that F is an M-sheaf if and only if it is a sheaf
for the τ

M
topology on Sch/S.

Comment: Most of you missed the importance of the condition F (∅) = F. It
is used in showing that if F is a sheaf in the τ

M
-topology, then it is a prepared

presheaf, i.e., F (
∐
α Tα) =

∏
α F (Tα). Let T =

∐
α Tα and let pα : Tα → T be the

canonical open immersion. One has a natural map F (T ) →
∏
α F (Tα) given by

s 7→ (p∗αs). We have to find a map
∏
α F (Tα) → F (T ) which is the inverse of the

map just described. First note that {Tα
pα−−→ T} is jointly in M since the identity

map T → T is in M. This means {Tα
pα−−→ T} is a cover for the τ

M
-topology.

Let (sα) ∈
∏
α F (Tα) and let F = {†}. It is clear that for all indices α and β,

Tαβ = Tα ∩ Tβ = ∅, whence F (Tαβ) = F. Thus sα|Tαβ = † = sβ |Tαβ . Since F is a
τ
M

-sheaf, this gives rise to a unique s ∈ F (T ) such that p∗αs = sα for every index
α.

1.2. Problem 6. Let f : X → Y be a map of schemes. Show that the following are
equivalent:

(a) Every quasi-compact open subset of Y is the image of a quasi-compact open
subset of X.

(b) There exists a covering (in the classical sense of the term) {Vi} of Y by
open affine subschemes, such that each Vi is the image of a quasi-compact
open subset of X.

(c) The map f is surjective and given a point x ∈ X, there exists an open neigh-
borhood U of x in X such that f(U) us open in Y , and the map U → f(U)
induced by f (by restricting to U) is a quasi-compact map.

(d) The map f is surjective and given a point x ∈ X, there exists a quasi-
compact open neighborhood U of x in X such that f(U) is open and affine
in Y .
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Brief Solution:
(a)⇒(b) is obvious.
(b)⇒(c). Suppose (b) is true. Then it is clear that f is surjective. Let x ∈ X be

a point. Let y = f(x). Since (b) is true, there is an affine open neighbourhood V
of y such that V is the image under f of a quasi compact open set U ′ in X. Pick
an affine open neighborhood U ′′ of x contained in f−1(V ). Set U = U ′ ∪ U ′′. It is
evident that f(U) = V . Moreover U is the finite union of quasi compact schemes,
and hence is a quasi-compact scheme. Since U is quasi-compact and V = f(U) is
affine, the induced map U → f(U) = V is quasi-compact. Thus f satisfies (c).

(c)⇒(d). Suppose f satisfies (c). The map f is surjective. Let x ∈ X. We can
find an open neighborhood U ′ of x such that V ′ = f(U ′) is open and the resulting
map U ′ → V ′ is quasi-compact. Call this map g. Let y = f(x). Then y ∈ V ′. Pick
an affine open neighbourhood V of x such that V ⊂ V ′. Set U = g−1(V ). Since g
is quasi-compact, and V is quasi-compact (being affine), U is also quasi-compact.
Moreover f(U) = V . Thus f satisfies (d).

(d)⇒(a). First we make the following observation. Suppose f satisfies (d). Then
there are open covers U ′ = {U ′α} of X and V ′ = {V ′α} of Y such that f(U ′α) = V ′α
and the map gα : U ′α → V ′α obtained by restricting f to U ′α, is quasi-compact for
every index α. Indeed, we may take the indices α to be the points of X is necessary.
(In slightly greater detail, for every point x ∈ X, we can find a quasi-compact open
neighborhood U ′x of x such that V ′x := f(U ′x) is open and affine in Y and clearly
U ′x → V ′x is quasi-compact. The surjectivity of f ensures that the V ′x cover Y .)

Now suppose V is a quasi-compact open subscheme of Y . Set Vα = V ′α ∩ V ,
and Uα = g−1α (Uα). Then Uα → Vα is quasi-compact since gα is so. Denote this
map by fα : Uα → Vα. For each index α we have an affine open cover {Vαj}j of
Vα. For indices α and j in our range, set Uαj := f−1α (Uαj). Since fα is quasi-
compact, each Uαj is quasi-compact. Now {Vαj}α,j is an affine open cover of the
quasi-compact scheme V . It follows we have a finite number of affine open subsets
Vαkjk , k = 1, . . . , p which cover V . Set U = ∪pk=1Uαkjk . Being a finite union of
quasi-compact open sets, U is quasi-compact and open. It is clear that f(U) = V .
Thus f satisfies (a).

1.3. Problem 8. Let S be a scheme and let

F :
(
Sch/S

) ◦ → Sets

be a presheaf on Sch/S such that F (∅) = F. Let M′ be the class of faithfully flat
and quasi-compact maps, M′′ the class of maps V → U such that V =

∐
i Ui with

each Ui an open subscheme of U and V → U the natural map (open immersion on
each Ui) and such that U = ∪iUi. Let M be the class of fpqc-maps. Show that the
following are equivalent:

(a) F is an M′-sheaf and an M′′-sheaf.

(b) F is an M-sheaf.

Brief Solution: It is clear (b)⇒(a), for maps in M′ and M′′ are in M. Let
us prove (a)⇒(b). Suppose F is an M′-sheaf as well as an M′′-sheaf. Suppose
p : T ′ → T is in M. According to Problem 6 (especially part (d)), p is faithfully
flat and one can find a (Zariski) open cover {Uα} of T ′ by quasi-compact open
subschemes, and a (Zariski) open cover {Vα} of T by affine open subschemes with
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p(Uα) = Vα. Let fα : Uα → Vα be the map obtained by restricting p to Uα. Then
fα is in M′ since it is faithfully flat and quasi-compact. Now suppose ξ ∈ F (T ′) is
such that p∗1(ξ) = p∗2(ξ). Let ξα = ξ|Uα . Since p∗1(ξ) = p∗2(ξ), the “restriction” of ξα
to Uα ×Vα Uα via either projection is the same. Since fα : Uα → Vα is in M′ and
F is an M′-sheaf, it follows that we have a unique element ζα ∈ F (Vα) such that
f∗α(ζα) = ξα. These considerations hold for every index α. Next fix two indices α
and β and write V = Vα ∩ Vβ and U = f−1α (V ) ∪ f−1β (V ). Let f : U → V be the

resulting map (i.e., f is obtained by restricting p : T ′ → T to U). Let ξU = ξ|U .
Then the equation p∗1(ξ) = p∗2(ξ) implies that the pull-back of ξU to U ×V U by
either projection is the same. Now f : U → V is quasi-compact since fα and fβ
are. Hence we have ζU ∈ F (V ) such that f∗(ζU ) = ξU . Now ξU |f−1

α (V ) = ξα|f−1
α (V )

and hence by uniqueness of ζα|V we have ζU = ζα|V . Similarly ζU = ζβ |V . Thus
ζα|Vαβ = ζβ |Vαβ Since F is an M′′-sheaf, the ζα glue uniquely to give ζ ∈ F (T ).
Moreover p∗ζ|Uα = ξα for every α. Again using the fact that F is an M′′-sheaf, we
see that p∗ζ = ξ.

1.4. Problem 9 (b). Let Z ′ ↪→ T ′ be a closed subscheme of T ′ such that p−11 (Z ′) =
p−12 (Z ′) as closed subschemes of T ′′. Show that there is a unique closed subscheme
Z ↪→ T such that p−1(Z) = Z ′.
Comment: One has to use the fact that closed subschemes of T are the same as
surjective maps of OT -algebras of the form

OT � A .

Moreover, if (A ′1 , φ1)→ (A ′2 , φ2) is a map of descent data on T ′ with the underlying
map of quasi-coherent sheaves A ′1 → A ′2 a map of OT ′ -algebras, then the resulting
map of descended OT -modules, A1 → A2 is a map of OT -algebras, as can be readily
verified from the proof of faithfully flat descent. From part (a) of the problem, it is
clear that the natural surjection OT ′ � OZ′ is a map of descent data, and if A is
the quasi-coherent sheaf sheaf such that p∗A = OZ′ then A is an OT -algebra and
the descended map OT → A is surjective. This defines a unique closed subscheme
Z of T such that A = OZ . It is evident that p−1(Z) = Z ′ since p∗(A ) = OZ′ .

1.5. Problem10. Let S be a scheme. In Sch/S consider the cartesian diagram

T ′′

�p1

��

p2 // T ′

p

��
T ′

p
// T

with p : T ′ → T fpqc.

(a) Let f ′ : T ′ → Z be a map in Sch/S such that f ′ ◦ p1 = f ′ ◦ p2. Show that
there exists a unique map of schemes f : T → Z such that f ′ = f ◦ p. [Hint:
Use Problem 8 to reduce to the case where p is faithfully flat and quasi-
compact. Next reduce to the case where T and T ′ and Z are affine. Finally
use the graph Γ′ = Γf ′ ↪→ T ′ ×S Z (show it is a closed subscheme of the
product scheme!) and make it “descend” to a closed subschema of T ×S Z.
And then?]

(b) Conclude that hZ = HomSch/S (−, Z) is an fpqc-sheaf on Sch/S.
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Comments: The reduction to the affine case in part (a) was not done very well
by any of you. First note that (a) and (b) are really equivalent statements. One
is saying the same thing. According to Problem 8 we only have to check that hZ
is an M′-sheaf, since it is trivially an M′′-sheaf (we are using the notations of the
statement of Problem 8). In other words we have to show part (a) under the as-
sumption that p : T ′ → T is faithfully flat and quasi-compact. By Proposition 2.1.1
of Lecture 6, we know that a set C ⊂ T is open if and only if p−1(C) is open in
T ′. We will show that the problem is local on Z (surprising!). First observe that

the condition f ′(p1) = f ′(p2) implies that for any z ∈ Z, f ′
−1

(z) is the union of
fibres of p. (This amounts to the statement that if f ′(x′1) = z and x′2 ∈ X ′ is a
point such that p(x′1) = p(x′2), then f ′(x′2) = z.) In particular, if W ⊂ Z, then

f ′
−1

(W ) = p−1(C) for C = p(f ′
−1

(W )). In view of the just cited Proposition, if W
is open in Z, then C must be open in X. One can therefore replace X by C, X ′ by

f ′
−1

(W ) and Z by W in this case, and a solution to the problem in this situation
amounts to a solution in the general situation. Thus without loss of generality, we
may assume Z is affine. The problem is clearly local on X. So next we may assume
X is affine. Since p is quasi-compact, X ′ is quasi-compact and so can be covered
by a finite number of affine open subschemes. Replacing X ′ be the disjoint union
of these finite number of affines if necessary, we may assume X ′ is affine.

Finally if A → B is a map of rings, the the graph of the corresponding map
of affine schemes is the closed subscheme of SpecA⊗Z B given by the surjection
A⊗Z B → B, a⊗ b 7→ ab. Thus in this situation the graph is closed.

1.6. Problem 14 (d). Let f : Z → X be a G-space over X. Consider Z := ZZ =
Z ×X Z, and the induced map fZ : Z → Z. Define

Ψ: GZ → Z

by (z, g) 7→ (z, zg), z ∈ Z, g ∈ G. Suppose f : Z → X has local sections, i.e.,
around each point x ∈ X there is an open neighborhood such that the restriction
f−1Ux → Ux of f has a section. Suppose further that Ψ is an isomorphism. Show
that f : Z → X is a principal bundle and the right G-action on Z induced by its
principal bundle structure is the given right G-action on it.
Comments: Let {σα : Uα → f−1(Uα)}α be the local sections of f : Z → X. Note
that {Uα} is an open cover of X. Now the base change of any trivial principal
G-bundle is again t rival. Since Ψ is an isomorphism, fZ : Z → Z is a trivial
principal G-bundle. Its base change via the map σα : Uα → Z is clearly f−1(Uα).
Thus f−1(Uα) → Uα is a trivial principal G-bundle. By Problem 12, f : Z → X is
a principal G-bundle.

f−1(Uα)

via f

��

�

// Z

fZ

��

//

�

Z

f

��
Uα σα

// Z
f
// X
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2. Sections of E/H and reductions of structure group of E → X

As before, let H ↪→ G be a closed subgroup scheme over S such that H → S is
smooth.

Let X ∈ Sch/S and let π : E → X be a G-torsor. As in earlier lectures, E/H
is defined to be fppf-sheafifcation of the presheaf T 7→ E(T )/H(T ) on Sch/X . We
then have maps $ : E → E/H and π/H : E/H → X such that π = π/H ◦$.

We discuss very briefly the strategy for showing that sections of π/H : E/H → X
correspond to reductions of structure group of π : E → X. More generally, we will
argue maps T → E of X-spaces give reductions of structure group of πT : ET → T
to H. We will flesh this out in subsequent lectures.

Recall from Yoneda that a map of X-spaces T → E/H, with T ∈ Sch/X , is the
same as a section of the sheaf E/H over T . Recall Proposition 1.3.2 of Lecture 21,

namely: Elements of (E/H)(T ) are represented by pairs (T ′
p−→ T, e), where e ∈

E(T ′) is an element such that e(p2) = e(p1)h for a T ′′-valued point h of H. Two
such pairs (T1, e1) and (T2, e2) represent the same element of (E/H)(T ) if and
only if e2(t2) = e1(t1)h where ti : T1 ×T T2 → Ti, i = 1, 2, are the projections, and
h ∈ H(T1 ×T T2).

If (T ′
p−→ T, e) is such a pair representing an element ξ ∈ (E/H)(T ) and h ∈

H(T ′′) the element defined by e(p2) = e(p1)h, then h is a H-valued 1-cocycle.
In fact if t′′ = (t′1, x

′
2) ∈ T ′′(W ) for W ∈ Sch/T , then the equation e(p2) =

e(p1)h translates to e(t′2) = e(t′1)h(t′1, t
′
2), from which one can easily deduce that

for three W -valued points t′1, t′2, and t′3 of T ′ lying over W → T , the identity
h(t′1, t

′
2)h(t′2, t

′
3) = h(t′1, t

′
3) holds.

If ẽ := (1T ′ , e), then ẽ : T ′ → ET ′ is a section of the G-torsor πT ′ : ET ′ → T ′,
and gives a trivialization of this torsor. The corresponding transition function is
precisely h. Thus we have reduced the structure group of ET to H by means of the

pair (T ′
p−→ T, e). It is not hard to see that if we have another pair representing

ξ : T → E/H, then that pair will give rise to a transition function, i.e., a 1-cocycle,
h∗ ∈ H(T ′′) which is cohomologous (via an element in H(T ′)) to h. For this
we again use Proposition 1.3.2 of Lecture 21. The conclusion is that the element
of H1(T, HT ) obtained from any pair (T ′ → T, e) representing ξ ∈ (E/H)(T )
is independent of the pair. In other words ξ : T → E/H gives us a well-defined
reduction of structure group of πT : ET → T .

Let the Pξ → T be the H-torsor corresponding to the element in H1(T, HT )
obtained from ξ : T → E/H. We will show in subsequent lectures that Pξ =
T ×E/H E.
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phismesn de schémas IV, Publ. Math. IHES 32(1967).
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