LECTURE 22

1. E/H and E(G/H)

Throughout this section H < G is a closed subgroup scheme (over S) of the
groups scheme G — S, such that H — §' is smooth.

1.1. Recap from the last lecture. Recall that in Lecture 21 we defined E/H as
an fppf-sheaf together with natural maps @w: £ — E/H and n/5: E/H — X. In
greater detail, E/H is the fppf-sheafication of the presheaf F': (Sch,y)° — (Sets)
on Sch,x given by
T— E(T)/H(T)

as T varies in Sch/x. Note that we are working with objects and maps in Sch, x, and
hence X (T') is a singleton set for every T' € Sch,x. (In particular X (E) = {7}.)
One therefore has natural maps of functors £ — F and F' — X such that the
composite £ — F — X is n: E — X. Sheafifying with respect to the fppf-
topology on Sch,x and using the fact that E' and X are already sheaves, we get a
commutative diagram

(1.1.1) E

Setting X = S and E = G we recover the construction of G/H given in Subsec-
tion 2.1 of Lecture 20, with @w = py and 7/ = tgy.

1.2. Representability of E/H. As we saw E/H is not always representable.
Indeed G/H is often not representable. In Lecture2l we gave certain sufficient
conditions for G/H to exist as a scheme (see Examples1.2.1 of loc.cit.). If further,
G/H is a locally quasi-affine G-space, then E/H is representable. We state the
result formally below.

Proposition 1.2.1. Suppose G/H ‘s representable as a locally quasi-affine G-
space. Then E/H is representable by the X -scheme E(G/H).

Proof. The statement is obvious if X = S and F = G. Note that for T' € Schx,
Er/H =T xg(E/H) = Er/Hr. In particular for T' € Sch g, we have the relations
Gr/H =T xs (G/H) = Gr/Hr. Let p: X' — X be a trivialising fpgc-covering
map for the G-torsor 7: E — X, with (say) the trivialisation

HZX/XSG:GXI — XIXXE:ZE/.
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As before, let gg: X" — G denote the transition function. Let p,,p,: X" = X’ be
the two projections. From our just made observations we have an isomorphism

01: X' xs(G/H) =~ E'/H

such that the automorphism p*(0,5) "' op?(0,x) of the X”-scheme X" xg (G/H)
is given by (2", &) — (2", go§). In other words E/H = E(G/H). O

1.3. The space E xs H and the sheaf F xp,y E. Let T' € Sch,x and let
e: T — E be a T-valued point of the X-scheme E. If h € H(T), then it is evident
that e and eh have the same image in (E/H)(T) (since they have the same image
in E(T)/H(T)). Therefore (e, eh) € (E xg/ug E)(T). One can therefore define a
map of sets (E xs H)(T) = (E xg/ug E)(T) by (e, h) = (e, eh). This is clearly
functorial and gives us a map of fppf-sheaves

Proposition 1.3.2. The map E xs H — E xg/g E of (1.3.1) above is an iso-
morphism.

Proof. Consider the map : E xg H — E xx E given by (e, h) — (e, eh). It is
evident that for each T € Sch,y, this defines an injective map (E xs H)(T) —
(E xg E)(T). For each T' € Schx, define the subset R(T) of (E xx E)(T) by

R(T) = {(e, eh) € (E xx E)(T)|h € H(T)}.

Clearly R is a presheaf on Sch,x. Two facts are immediate. First, the map (7
gives us a bijection (E'x s H)(T) - R(T') which is functorial in " € Sch, x, i.e., R
is representable and E xg H == R. Second, from its definition R(T') is an equiva-
lence relation on E(T') for every T € Sch /x> whence R is a scheme theoretic equiv-
alence relation. Now E/R is defined as the fppf-sheafification of T — E(T)/R(T).
In other words E/R = E/H by definition, for E(T)/R(T) = E(T)/H(T). At
this point, recall the Proposition1.3.2 from Lecture 21 characterizing sections of
E/H over an X-scheme T, namely: The elements of (E/H)(T) are represented by
pairs (T" 2 T, €), where e € E(T") is an element such that e(py) = e(p1)h for a
T" -valued point h of H. Two such pairs (T1, e1) and (Tz, e3) represent the same el-
ement of (E/H)(T) if and only if ea(ta) = e1(t1)h where t;: Ty xpTe — Ty, 1= 1,2,
are the projections, and h € H(Ty x7 Tz). Now suppose (e1, e2) € (E xg/g E)(T),
for some T' € Sch,x. In other words e; and ey are two T' valued points of E such
that their images in (E/H)(T) are the same. Taking 77 = T» = T in Proposition
1.3.2 of Lecture 21, we see that there exists a unique element h € H(T) such that
eo = e1 - h. Thus the valued point (e, es) = (e1, €1 - h) and hence is an element of
R(T). Conversely, it is obvious that if h € H(T), then (e, eh) is in (E x g5 E)(T)
forall e € E(T). Thus R = E x /g E. But we just saw that F'xg H -~ R. This
completes the proof. O

Remark 1.3.3. Let g1,¢2: R = E be the two projections. Proposition 1.3.2 says
in particular that we have a commutative diagram with each rectangle cartesian:

ExsH-—>ExpyE——R—2>FE

| o]
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Next we will show that E/H is a quotient in the category of fppf-sheaves on
Sch,x, i.e., it has the co-equalizer property for the maps & = E. We state it
somewhat differently as follows.

Proposition 1.3.4. Let a: E xg H — E be the action map of H on E, and
pe: ExsH — E the first projection. In other words a(e, h) = eh and pg(e, h) = e.
Suppose F': (Sch)x)® — (Sets) is an fppf-sheaf on Sch)x and f: E — F a map
of sheaves such that f'oa = fopg. Then there exists a unique map f: E/H — F
such that fow = f'. In other words in the following diagram in which the solid
arrows form a commutative diagram, the dotted arrow can be filled uniquely to make
the whole diagram commutative.

(1.3.4.1) ExsH-*—>FE

We postpone the proof. It depends on the following facts (some of which you
will be asked to prove in your homework):

e The map w: F — E/H is relatively representable, i.e., if T' € Sch,x and
T — E/H is an X-map, then T' X g,z E is representable.

o If T — E/H is as above, the map T' x g,y E — T is an H-torsor.

e Therefore the map w: E — E/H is a surjective map of fppf-sheaves. A
map f: A — B of M-sheaves (where M is a collection of maps in Sch g
which contains all isomorphisms, is stable under compositions and base
changes) is said to surjective if given £ € B(T), there is a map p: T" — T
in M and an element n € A(T") such that p*¢ = f(T)(n).

e If A — B is a surjective map of M-sheaves (see above), then B is the
co-equalizer of A xg A = A.
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