
LECTURE 22

1. E/H and E(G/H)

Throughout this section H ↪→ G is a closed subgroup scheme (over S) of the
groups scheme G→ S, such that H → S is smooth.

1.1. Recap from the last lecture. Recall that in Lecture 21 we defined E/H as
an fppf-sheaf together with natural maps $ : E → E/H and π/H : E/H → X. In
greater detail, E/H is the fppf-sheafication of the presheaf F : (Sch/X) ◦ → (Sets)
on Sch/X given by

T 7→ E(T )/H(T )

as T varies in Sch/X . Note that we are working with objects and maps in Sch/X , and
hence X(T ) is a singleton set for every T ∈ Sch/X . (In particular X(E) = {π}.)
One therefore has natural maps of functors E → F and F → X such that the
composite E → F → X is π : E → X. Sheafifying with respect to the fppf-
topology on Sch/X and using the fact that E and X are already sheaves, we get a
commutative diagram

(1.1.1) E

π
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$
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Setting X = S and E = G we recover the construction of G/H given in Subsec-
tion 2.1 of Lecture 20, with $ = pH and π/H = tH .

1.2. Representability of E/H. As we saw E/H is not always representable.
Indeed G/H is often not representable. In Lecture 21 we gave certain sufficient
conditions for G/H to exist as a scheme (see Examples 1.2.1 of loc.cit.). If further,
G/H is a locally quasi-affine G-space, then E/H is representable. We state the
result formally below.

Proposition 1.2.1. Suppose G/H is representable as a locally quasi-affine G-
space. Then E/H is representable by the X-scheme E(G/H).

Proof. The statement is obvious if X = S and E = G. Note that for T ∈ Sch/X ,
ET /H = T ×S (E/H) = ET /HT . In particular for T ∈ Sch/S , we have the relations
GT /H = T ×S (G/H) = GT /HT . Let p : X ′ → X be a trivialising fpqc-covering
map for the G-torsor π : E → X, with (say) the trivialisation

θ : X ′ ×S G = GX′ −→∼ X ′ ×X E =: E′.
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As before, let gθ : X ′′ → G denote the transition function. Let p
1
, p

2
: X ′′ ⇒ X ′ be

the two projections. From our just made observations we have an isomorphism

θ/H : X ′ ×S (G/H) −→∼ E′/H

such that the automorphism p∗
1
(θ/H)−1 ◦p∗

2
(θ/H) of the X ′′-scheme X ′′ ×S (G/H)

is given by (x′′, ξ) 7→ (x′′, gθξ). In other words E/H = E(G/H). �

1.3. The space E ×S H and the sheaf E ×E/H E. Let T ∈ Sch/X and let
e : T → E be a T -valued point of the X-scheme E. If h ∈ H(T ), then it is evident
that e and eh have the same image in (E/H)(T ) (since they have the same image
in E(T )/H(T )). Therefore (e, eh) ∈ (E ×E/H E)(T ). One can therefore define a
map of sets (E ×S H)(T ) → (E ×E/H E)(T ) by (e, h) 7→ (e, eh). This is clearly
functorial and gives us a map of fppf-sheaves

(1.3.1) E ×S H → E ×E/H E.

Proposition 1.3.2. The map E ×S H → E ×E/H E of (1.3.1) above is an iso-
morphism.

Proof. Consider the map β : E ×S H → E ×X E given by (e, h) 7→ (e, eh). It is
evident that for each T ∈ Sch/X , this defines an injective map (E ×S H)(T ) →
(E ×S E)(T ). For each T ∈ Sch/X , define the subset R(T ) of (E ×X E)(T ) by

R(T ) = {(e, eh) ∈ (E ×X E)(T ) |h ∈ H(T )}.
Clearly R is a presheaf on Sch/X . Two facts are immediate. First, the map β(T )
gives us a bijection (E×SH)(T ) −→∼ R(T ) which is functorial in T ∈ Sch/X , i.e., R
is representable and E×SH −→∼ R. Second, from its definition R(T ) is an equiva-
lence relation on E(T ) for every T ∈ Sch/X , whence R is a scheme theoretic equiv-
alence relation. Now E/R is defined as the fppf-sheafification of T 7→ E(T )/R(T ).
In other words E/R = E/H by definition, for E(T )/R(T ) = E(T )/H(T ). At
this point, recall the Proposition 1.3.2 from Lecture 21 characterizing sections of
E/H over an X-scheme T , namely: The elements of (E/H)(T ) are represented by

pairs (T ′
p−→ T, e), where e ∈ E(T ′) is an element such that e(p2) = e(p1)h for a

T ′′-valued point h of H. Two such pairs (T1, e1) and (T2, e2) represent the same el-
ement of (E/H)(T ) if and only if e2(t2) = e1(t1)h where ti : T1×T T2 → Ti, i = 1, 2,
are the projections, and h ∈ H(T1×T T2). Now suppose (e1, e2) ∈ (E×E/H E)(T ),
for some T ∈ Sch/X . In other words e1 and e2 are two T valued points of E such
that their images in (E/H)(T ) are the same. Taking T1 = T2 = T in Proposition
1.3.2 of Lecture 21, we see that there exists a unique element h ∈ H(T ) such that
e2 = e1 · h. Thus the valued point (e1, e2) = (e1, e1 · h) and hence is an element of
R(T ). Conversely, it is obvious that if h ∈ H(T ), then (e, eh) is in (E ×E/H E)(T )
for all e ∈ E(T ). Thus R = E×E/H E. But we just saw that E×SH −→∼ R. This
completes the proof. �

Remark 1.3.3. Let q1, q2 : R ⇒ E be the two projections. Proposition 1.3.2 says
in particular that we have a commutative diagram with each rectangle cartesian:

E ×S H

��

˜ // E ×E/H E R
q
2 //

q1

��
�

E

$

��
E E

$
// E/H
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Next we will show that E/H is a quotient in the category of fppf-sheaves on
Sch/X , i.e., it has the co-equalizer property for the maps R ⇒ E. We state it
somewhat differently as follows.

Proposition 1.3.4. Let α : E ×S H → E be the action map of H on E, and
pE : E×SH → E the first projection. In other words α(e, h) = eh and pE(e, h) = e.
Suppose F : (Sch/X) ◦ → (Sets) is an fppf-sheaf on Sch/X and f : E → F a map
of sheaves such that f ′ ◦α = f ◦ pE. Then there exists a unique map f : E/H → F
such that f ◦$ = f ′. In other words in the following diagram in which the solid
arrows form a commutative diagram, the dotted arrow can be filled uniquely to make
the whole diagram commutative.

(1.3.4.1) E ×S H
α //

pE

��

E

$

�� f ′

��

E
$ //

f ′
--

E/H
f

''
F

We postpone the proof. It depends on the following facts (some of which you
will be asked to prove in your homework):

• The map $ : E → E/H is relatively representable, i.e., if T ∈ Sch/X and
T → E/H is an X-map, then T ×E/H E is representable.
• If T → E/H is as above, the map T ×E/H E → T is an H-torsor.
• Therefore the map $ : E → E/H is a surjective map of fppf-sheaves. A

map f : A → B of M-sheaves (where M is a collection of maps in Sch/S
which contains all isomorphisms, is stable under compositions and base
changes) is said to surjective if given ξ ∈ B(T ), there is a map p : T ′ → T
in M and an element η ∈ A(T ′) such that p∗ξ = f(T )(η).
• If A → B is a surjective map of M-sheaves (see above), then B is the

co-equalizer of A×B A⇒ A.
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