LECTURE 21

1. Sections of E(F') and G-equivariant maps

Let X be an S-scheme, 7: F — X a G-torsor, and F' — S a locally quasi-affine
G-scheme. As usual 7p: E(F) — X will denote the associated fibre bundle over
X.

1.1. Equivariant maps. Recall that in Lecture 18, Theorem1.1.3, we gave an
alternative description of F(F) as the quotient by G of E xg F under the right
action
(e, f)-g=1(eg, 97'f)

on F xg F, where as usual, e: T — FE, g: T — G, and f: T — F are T-valued
points of E, G, and F, for T € Sch,g. If F' = S, then easy considerations show
that E(F) = X (we point out that any S-automorphism of S is the identity, and so
any G-action on S must be trivial). Indeed if (p: X' — X, 6: Gx» = Ex/) is a
trivializing data for 7: E — X, and gy the corresponding transition element, then
ge acts trivially on X" xg F = X" xg S = X", and the descent of the X’-scheme
X' xgF =X"xg8 = X'to X via the descent datum provided by gy is necessarily
X itself. Thus X = E(S) = E xsS/G = E/G. We record the two formulae

(1.1.1) E(F) = (E x5 F)/G and E/G = X.

Moreover, the quotient E(F) = (E xg F)/G is an effective quotient of E xg F by
a smooth (and hence fpqc) equivalence relation. This last condition means that if
R — (E xg F) xg (E xg F) is the scheme theoretic equivalence relation (e, f) ~
(eg, g~ f), then the two projections R = E xg F are smooth . The universal
property of quotients then implies that if g: E xg F — (F xg F)/G = E(F) is the
quotient map and if p: E xXs F' — Z is a G-equivariant map in Sch,g for the trivial
action of G on Z, then there is a unique map of ¢: E(F) — Z such that ¢ = ¢ogq.

Proposition 1.1.2. There is a bijective correspondence between sections of the
fibre-bundle np: E(F) — X and G-equivariant maps E — F. Here the action on
F is the right action on it induced by the given left action on it (i.e., f-g:= g~ f).

Proof. Suppose p: EE — F' is G-equivariant in Sch /g, and suppose as before
q: ExsF— (ExgF)/G=E(F)

is the quotient map. We have a map ¢: E — E xg F given by ¢ = (1g, ¢). Note
that @ is a section of the projection F xg F' — E. Clearly ¢ is G-equivariant.
Hence, so is gqop: E — E(F). Since the action of G on E(F) is trivial, by the
universal property of the quotient 7: E — FE/G = X, we deduce a map from
Y: X = E/G — E(F) such that ¢pom = gop, and such a ¢ is unique. Since ¢ is
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LR can be identified with E xx E xg F and the projections ¢1 and g2 to E Xg F by the
assignments (e1, ez, f) — (e1, gu(e1, e2)f) and (e1, e2, f) — (e2, f) respectively. Here the map
gu: E Xx E — G is the transition function corresponding to the trivialisation of £ — X by the
fpgc-covering E — X and the diagonal section of p1: E xx E — E.
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a section of E xg F — FE, one checks easily that ¢ is a section of np: E(F) —
X. As in Lecture 18, Subsection 2.1, the situation is summarized by the following

commutative diagram
/ e

FE q
. (E x F)/G
-
E/G E4(F)

In summary, given a G-equivariant map ¢: F — F, we obtain a section ¢: X —
E(F) of mp.

Note that the parallelograms in the above diagram are cartesian. Therefore if
¢: X — E(F) is a section of 7, then we have a map ¢on: E — E(F), whence a
map ¢: E — FE xx E(F) given by e — (e, ¢pom(e)). Identifying E x x E(F) with
E xg I, we see that ¢ is a G-equivariant section of £ xg F' — FE, and hence the
map ¢ = prop is G-equivariant, where pr: E Xg F' — F' is the projection on to
F. Thus the section ¢: X — E(F) gives rise to a G-equivariant map ¢: E — F.
It is easy to see that the two processes are inverses.

To help the reader verify details, we point out that the identification

EXXE(F)ZEXSF

used above is given by (e, [¢/, f]) — (e, gf) where g is the unique valued point of
G such that ¢’ = eg. O

1.2. The space E/H. Next suppose H C G is a closed subgroup scheme over S
such that H — S is smooth. We wish to say that reductions of structure group of
the G-torsor 7: E — X are in one-to-one correspondence with sections of E/H =
E(G/H) = X.

The Problem: Does G/H exist as a scheme? How about E/H? We did define
G/H earlier as an {ppf sheaf.

Examples 1.2.1. Regarding the question of representability of quotients by schemes,
here are some examples:

(1) If S is the spectrum of a field k, then G/H exists as a smooth quasi-
projective variety. If £ — K is a field extension with K algebraically closed,
then G/H(K) = G(K)/H(K). Here is the idea of the proof. One has to
find a representation G — GL(V'), for a finite dimensional k-vector-space
V, such that H is the stabilizer of a line L in V. We therefore have an
action of G on P(V). If xy € P(V) is the point represented by L, then the
stabilizer of xg is H. One shows that G/H can be realised as the G-orbit
of xg with its reduced structure and that this reduced orbit is smooth and
locally closed in P(V'). Details can be found in [C1, p.45, Thm. 18.1.1].
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(2) In the above case, if H in the above situation is a normal subgroup then
G/H is affine [C1, p. 46, Example 18.1.4].

(3) Suppose G — S is a reductive group scheme and H — S is a parabolic
subgroup of G, i.e. P. is a parabolic subgroup of G_, for every s € S
and S a geometric point over s. Then it turns out G/P exists as a smooth
projective S-scheme [C2, p. 128, Cor. 5.2.8]. Moreover the G-space G/P can
be covered by open subschemes which are G-stable and affine over S. Thus
if m: E — Sis a G-torsor, E/P = E(G/P) exists as smooth proper scheme

over X.

Just as we defined G/H as an fppf-sheaf, we can define E/H as an fppf-sheaf
together with natural maps w: £ — E/H and 7/ : E/H — X. In greater detail,
consider the pre sheaf

F: (Sch,x)° — (Sets)
given by
T— E(T)/H(T)
as T' varies in Sch/x. Set
E/H =F*
where F is the sheafification of F' with respect to the fppf-topology on Sch/x.
Note that we are working with objects and maps in Sch,x, and hence X (7T') is a
singleton set for every 7' € Sch,x. (In particular X(E) = {m}.) One therefore has
natural maps of functors £ — F and F' — X such that the composite £ — F — X
is m: E — X. Sheafifying with respect to the fppf-topology on Sch,x and using
the fact that E and X are already sheaves, we get a commutative diagram

(1.2.2) E

N

m E/H
%f
X

1.3. Sections of E/H. To understand sections of E/H we need the following
Lemma.

Lemma 1.3.1. Suppose T € Sch;g, g € G(T), and we have an fpgc-map t: T' — T
such that g(t) € H(T'). Then g € H(T).

Proof. It is clear we may assume S is affine (whence so are G and H) by replacing S
by an affine open subscheme (such subschemes cover S) and taking inverse images of
this open subscheme in all the schemes we are considering (SG, S, T, T"). Further,
without loss of generality, we may assume T = Spec A. We know that there is a
quasi-compact open subscheme U of T’ such that ¢(U) = T. Replacing T’ by U
if necessary, we may assume 1" is quasi-compact. Finally, replacing 7" by a finite
disjoint union of affine open subschemas if necessary, we may assume T” = Spec B.
The graph of g(t): T — G is a closed subscheme of 7" xg G. Call this graph
I’. Let the graph of g: T — G be T' < T x5 G. Clearly I'" = t;!(T'), where
tg: T' xg G — T xg G is the base change of t: T — T. By our hypothesis, I
is actually a closed subscheme of T xg H, i.e., we have a hierarchy of inclusions
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I~ T xg H— T xg G. We therefore have a hierarchy of surjective maps of
O« sg-modules given by Or/x.q — Orixgoug — Or/. Since the first arrow and
the composite arrow are maps of descent data, and since the arrows are surjective,
the second arrow is also a map of descent data. It follows that we have a sequence
of surjective Ory g-maps Ory,c — Orxqm — Or. (These maps are surjective
because t¢ is faithfully flat.) The last surjection says I' < T x ¢ H, which is another
way of saying g € H(T). O

By the sheafification process described in Section 3 of Lecture 7, a section of the
sheaf E/H over T' € Sch,x is represented by a pair (7" 2, T, [e]) where p: T — T
is an fppf-map in Sch,x, e is a T"-valued point of E, and [e] = eH(T") is the
image of e in E(T")/H(T"). This pair has the property that there is an fppf-map
q: T — T" such that q*pile] = ¢*pile]. Let g € G(T") be the unique element such
that e(p2) = e(p1)g. It follows that e(paoq) = e(p10g)g(q). On the other hand,
the relation ¢*pile] = ¢*p3le] is equivalent to saying that e(psoq) = e(p1oq)h for
some (necessarily unique) element h € H(T). It follows that g(¢g) = h. From the
Lemma we conclude that g € H(T").

Moreover, by modifying the above argument slightly, pairs (77 — T, [e1]) and
(Ty — T, [e2]) represent the same element of (E/H)(T), precisely when the equa-
tion ea(tz) = ey(t1)h for some (necessarily unique) h € H(Ty x Ta), where
ti: Ty xp Ty = T; (i = 1,2) are the two projections.

We have proven the following:

Proposition 1.3.2. Let T' € Schyx. Then elements of (E/H)(T) are represented

by pairs (T' 2 T, e), where e € E(T') is an element such that e(ps) = e(p1)h
for a T" -valued point h of H. Two such pairs (Ty, e1) and (Ts, e2) represent the
same element of (E/H)(T) if and only if e2(ta) = e1(t1)h where t;: Ty xr Ty — T;,
i =1,2, are the projections, and h € H(Ty xp T3).
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