
LECTURE 21

1. Sections of E(F ) and G-equivariant maps

Let X be an S-scheme, π : E → X a G-torsor, and F → S a locally quasi-affine
G-scheme. As usual πF : E(F ) → X will denote the associated fibre bundle over
X.

1.1. Equivariant maps. Recall that in Lecture 18, Theorem 1.1.3, we gave an
alternative description of E(F ) as the quotient by G of E ×S F under the right
action

(e, f) · g = (eg, g−1f)

on E ×S F , where as usual, e : T → E, g : T → G, and f : T → F are T -valued
points of E, G, and F , for T ∈ Sch/S . If F = S, then easy considerations show
that E(F ) = X (we point out that any S-automorphism of S is the identity, and so
any G-action on S must be trivial). Indeed if (p : X ′ → X, θ : GX′ −→∼ EX′) is a
trivializing data for π : E → X, and gθ the corresponding transition element, then
gθ acts trivially on X ′′ ×S F = X ′′ ×S S = X ′′, and the descent of the X ′-scheme
X ′×S F = X ′×S S = X ′ to X via the descent datum provided by gθ is necessarily
X itself. Thus X = E(S) = E ×S S/G = E/G. We record the two formulae

(1.1.1) E(F ) = (E ×S F )/G and E/G = X.

Moreover, the quotient E(F ) = (E ×S F )/G is an effective quotient of E ×S F by
a smooth (and hence fpqc) equivalence relation. This last condition means that if
R → (E ×S F ) ×S (E ×S F ) is the scheme theoretic equivalence relation (e, f) ∼
(eg, g−1f), then the two projections R ⇒ E ×S F are smooth 1. The universal
property of quotients then implies that if q : E ×S F → (E ×S F )/G = E(F ) is the
quotient map and if ϕ : E×S F → Z is a G-equivariant map in Sch/S for the trivial
action of G on Z, then there is a unique map of φ : E(F )→ Z such that ϕ = φ ◦ q.

Proposition 1.1.2. There is a bijective correspondence between sections of the
fibre-bundle πF : E(F ) → X and G-equivariant maps E → F . Here the action on
F is the right action on it induced by the given left action on it (i.e., f · g := g−1f).

Proof. Suppose ϕ : E → F is G-equivariant in Sch/S , and suppose as before

q : E ×S F → (E ×S F )/G = E(F )

is the quotient map. We have a map ϕ̃ : E → E ×S F given by ϕ̃ = (1E , ϕ). Note
that ϕ̃ is a section of the projection E ×S F → E. Clearly ϕ̃ is G-equivariant.
Hence, so is q ◦ ϕ̃ : E → E(F ). Since the action of G on E(F ) is trivial, by the
universal property of the quotient π : E → E/G = X, we deduce a map from
ψ : X = E/G → E(F ) such that φ ◦π = q ◦ ϕ̃, and such a φ is unique. Since ϕ̃ is
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1R can be identified with E ×X E ×S F and the projections q1 and q2 to E ×S F by the

assignments (e1, e2, f) 7→ (e1, gu(e1, e2)f) and (e1, e2, f) 7→ (e2, f) respectively. Here the map
gu : E ×X E → G is the transition function corresponding to the trivialisation of E → X by the

fpqc-covering E → X and the diagonal section of p1 : E ×X E → E.
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a section of E ×S F → E, one checks easily that φ is a section of πF : E(F ) →
X. As in Lecture 18, Subsection 2.1, the situation is summarized by the following
commutative diagram
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In summary, given a G-equivariant map ϕ : E → F , we obtain a section φ : X →
E(F ) of πF .

Note that the parallelograms in the above diagram are cartesian. Therefore if
φ : X → E(F ) is a section of πF , then we have a map φ ◦π : E → E(F ), whence a
map ϕ̃ : E → E ×X E(F ) given by e 7→ (e, φ ◦π(e)). Identifying E ×X E(F ) with
E ×S F , we see that ϕ̃ is a G-equivariant section of E ×S F → E, and hence the
map ϕ = pF ◦ ϕ̃ is G-equivariant, where pF : E ×S F → F is the projection on to
F . Thus the section φ : X → E(F ) gives rise to a G-equivariant map ϕ : E → F .
It is easy to see that the two processes are inverses.

To help the reader verify details, we point out that the identification

E ×X E(F ) = E ×S F
used above is given by (e, [e′, f ]) 7→ (e, gf) where g is the unique valued point of
G such that e′ = eg. �

1.2. The space E/H. Next suppose H ⊂ G is a closed subgroup scheme over S
such that H → S is smooth. We wish to say that reductions of structure group of
the G-torsor π : E → X are in one-to-one correspondence with sections of E/H =
E(G/H)→ X.

The Problem: Does G/H exist as a scheme? How about E/H? We did define
G/H earlier as an fppf sheaf.

Examples 1.2.1. Regarding the question of representability of quotients by schemes,
here are some examples:

(1) If S is the spectrum of a field k, then G/H exists as a smooth quasi-
projective variety. If k → K is a field extension with K algebraically closed,
then G/H(K) = G(K)/H(K). Here is the idea of the proof. One has to
find a representation G → GL(V ), for a finite dimensional k-vector-space
V , such that H is the stabilizer of a line L in V . We therefore have an
action of G on P(V ). If x0 ∈ P(V ) is the point represented by L, then the
stabilizer of x0 is H. One shows that G/H can be realised as the G-orbit
of x0 with its reduced structure and that this reduced orbit is smooth and
locally closed in P(V ). Details can be found in [C1, p. 45, Thm. 18.1.1].
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(2) In the above case, if H in the above situation is a normal subgroup then
G/H is affine [C1, p. 46, Example 18.1.4].

(3) Suppose G → S is a reductive group scheme and H → S is a parabolic
subgroup of G, i.e. P

s
is a parabolic subgroup of G

s
, for every s ∈ S

and s a geometric point over s. Then it turns out G/P exists as a smooth
projective S-scheme [C2, p. 128, Cor. 5.2.8]. Moreover the G-space G/P can
be covered by open subschemes which are G-stable and affine over S. Thus
if π : E → S is a G-torsor, E/P = E(G/P ) exists as smooth proper scheme
over X.

Just as we defined G/H as an fppf-sheaf, we can define E/H as an fppf-sheaf
together with natural maps $ : E → E/H and π/H : E/H → X. In greater detail,
consider the pre sheaf

F : (Sch/X) ◦ → (Sets)

given by
T 7→ E(T )/H(T )

as T varies in Sch/X . Set

E/H = F+

where F+ is the sheafification of F with respect to the fppf-topology on Sch/X .
Note that we are working with objects and maps in Sch/X , and hence X(T ) is a
singleton set for every T ∈ Sch/X . (In particular X(E) = {π}.) One therefore has
natural maps of functors E → F and F → X such that the composite E → F → X
is π : E → X. Sheafifying with respect to the fppf-topology on Sch/X and using
the fact that E and X are already sheaves, we get a commutative diagram

(1.2.2) E

π
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$
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1.3. Sections of E/H. To understand sections of E/H we need the following
Lemma.

Lemma 1.3.1. Suppose T ∈ Sch/S, g ∈ G(T ), and we have an fpqc-map t : T ′ → T
such that g(t) ∈ H(T ′). Then g ∈ H(T ).

Proof. It is clear we may assume S is affine (whence so are G and H) by replacing S
by an affine open subscheme (such subschemes cover S) and taking inverse images of
this open subscheme in all the schemes we are considering (SG, S, T , T ′). Further,
without loss of generality, we may assume T = SpecA. We know that there is a
quasi-compact open subscheme U of T ′ such that t(U) = T . Replacing T ′ by U
if necessary, we may assume T ′ is quasi-compact. Finally, replacing T ′ by a finite
disjoint union of affine open subschemas if necessary, we may assume T ′ = SpecB.
The graph of g(t) : T ′ → G is a closed subscheme of T ′ ×S G. Call this graph
Γ′. Let the graph of g : T → G be Γ ↪→ T ×S G. Clearly Γ′ = t−1

G (Γ), where
tG : T ′ ×S G → T ×S G is the base change of t : T ′ → T . By our hypothesis, Γ′

is actually a closed subscheme of T ′ ×S H, i.e., we have a hierarchy of inclusions
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Γ′ ↪→ T ′ ×S H ↪→ T ′ ×S G. We therefore have a hierarchy of surjective maps of
OT ′×SG-modules given by OT ′×SG � OT ′×SH � OΓ′ . Since the first arrow and
the composite arrow are maps of descent data, and since the arrows are surjective,
the second arrow is also a map of descent data. It follows that we have a sequence
of surjective OT×SG-maps OT×SG � OT×SH � OΓ. (These maps are surjective
because tG is faithfully flat.) The last surjection says Γ ↪→ T×SH, which is another
way of saying g ∈ H(T ). �

By the sheafification process described in Section 3 of Lecture 7, a section of the

sheaf E/H over T ∈ Sch/X is represented by a pair (T ′
p−→ T, [e]) where p : T ′ → T

is an fppf-map in Sch/X , e is a T ′-valued point of E, and [e] = eH(T ′) is the
image of e in E(T ′)/H(T ′). This pair has the property that there is an fppf-map

q : T̃ → T ′′ such that q∗p∗1[e] = q∗p∗2[e]. Let g ∈ G(T ′′) be the unique element such
that e(p2) = e(p1)g. It follows that e(p2 ◦ q) = e(p1 ◦ q)g(q). On the other hand,
the relation q∗p∗1[e] = q∗p∗2[e] is equivalent to saying that e(p2 ◦ q) = e(p1 ◦ q)h for

some (necessarily unique) element h ∈ H(T̃ ). It follows that g(q) = h. From the
Lemma we conclude that g ∈ H(T ′′).

Moreover, by modifying the above argument slightly, pairs (T1 → T, [e1]) and
(T2 → T, [e2]) represent the same element of (E/H)(T ), precisely when the equa-
tion e2(t2) = e1(t1)h for some (necessarily unique) h ∈ H(T1 ×T T2), where
ti : T1 ×T T2 → Ti (i = 1, 2) are the two projections.

We have proven the following:

Proposition 1.3.2. Let T ∈ Sch/X . Then elements of (E/H)(T ) are represented

by pairs (T ′
p−→ T, e), where e ∈ E(T ′) is an element such that e(p2) = e(p1)h

for a T ′′-valued point h of H. Two such pairs (T1, e1) and (T2, e2) represent the
same element of (E/H)(T ) if and only if e2(t2) = e1(t1)h where ti : T1×T T2 → Ti,
i = 1, 2, are the projections, and h ∈ H(T1 ×T T2).
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