LECTURE 21

1. Sections of $E(F)$ and G-equivariant maps

Let X be an S-scheme, $\pi: E \rightarrow X$ a G-torsor, and $F \rightarrow S$ a locally quasi-affine G-scheme. As usual $\pi_{F}: E(F) \rightarrow X$ will denote the associated fibre bundle over X.
1.1. Equivariant maps. Recall that in Lecture 18, Theorem 1.1.3, we gave an alternative description of $E(F)$ as the quotient by G of $E \times{ }_{S} F$ under the right action

$$
(e, f) \cdot g=\left(e g, g^{-1} f\right)
$$

on $E \times{ }_{S} F$, where as usual, $e: T \rightarrow E, g: T \rightarrow G$, and $f: T \rightarrow F$ are T-valued points of E, G, and F, for $T \in \mathbb{S c h}_{/ S}$. If $F=S$, then easy considerations show that $E(F)=X$ (we point out that any S-automorphism of S is the identity, and so any G-action on S must be trivial). Indeed if ($p: X^{\prime} \rightarrow X, \theta: G_{X^{\prime}} \xrightarrow{\sim} E_{X^{\prime}}$) is a trivializing data for $\pi: E \rightarrow X$, and g_{θ} the corresponding transition element, then g_{θ} acts trivially on $X^{\prime \prime} \times_{S} F=X^{\prime \prime} \times_{S} S=X^{\prime \prime}$, and the descent of the X^{\prime}-scheme $X^{\prime} \times{ }_{S} F=X^{\prime} \times_{S} S=X^{\prime}$ to X via the descent datum provided by g_{θ} is necessarily X itself. Thus $X=E(S)=E \times{ }_{S} S / G=E / G$. We record the two formulae

$$
\begin{equation*}
E(F)=\left(E \times_{S} F\right) / G \text { and } E / G=X \tag{1.1.1}
\end{equation*}
$$

Moreover, the quotient $E(F)=\left(E \times{ }_{S} F\right) / G$ is an effective quotient of $E \times{ }_{S} F$ by a smooth (and hence fpqc) equivalence relation. This last condition means that if $R \rightarrow\left(E \times_{S} F\right) \times_{S}\left(E \times_{S} F\right)$ is the scheme theoretic equivalence relation $(e, f) \sim$ $\left(e g, g^{-1} f\right)$, then the two projections $R \rightrightarrows E \times_{S} F$ are smooth ${ }^{1}$. The universal property of quotients then implies that if $q: E \times{ }_{S} F \rightarrow\left(E \times_{S} F\right) / G=E(F)$ is the quotient map and if $\varphi: E \times{ }_{S} F \rightarrow Z$ is a G-equivariant map in $\mathbb{S c h} / S$ for the trivial action of G on Z, then there is a unique map of $\phi: E(F) \rightarrow Z$ such that $\varphi=\phi \circ q$.
Proposition 1.1.2. There is a bijective correspondence between sections of the fibre-bundle $\pi_{F}: E(F) \rightarrow X$ and G-equivariant maps $E \rightarrow F$. Here the action on F is the right action on it induced by the given left action on it (i.e., $f \cdot g:=g^{-1} f$).
Proof. Suppose $\varphi: E \rightarrow F$ is G-equivariant in $\mathbb{S c h}_{/ S}$, and suppose as before

$$
q: E \times_{S} F \rightarrow\left(E \times_{S} F\right) / G=E(F)
$$

is the quotient map. We have a map $\widetilde{\varphi}: E \rightarrow E \times_{S} F$ given by $\widetilde{\varphi}=\left(1_{E}, \varphi\right)$. Note that $\widetilde{\varphi}$ is a section of the projection $E \times_{S} F \rightarrow E$. Clearly $\widetilde{\varphi}$ is G-equivariant. Hence, so is $q \circ \widetilde{\varphi}: E \rightarrow E(F)$. Since the action of G on $E(F)$ is trivial, by the universal property of the quotient $\pi: E \rightarrow E / G=X$, we deduce a map from $\psi: X=E / G \rightarrow E(F)$ such that $\phi \circ \pi=q \circ \widetilde{\varphi}$, and such a ϕ is unique. Since $\widetilde{\varphi}$ is

[^0]a section of $E \times_{S} F \rightarrow E$, one checks easily that ϕ is a section of $\pi_{F}: E(F) \rightarrow$ X. As in Lecture 18, Subsection 2.1, the situation is summarized by the following commutative diagram

In summary, given a G-equivariant $\operatorname{map} \varphi: E \rightarrow F$, we obtain a section $\phi: X \rightarrow$ $E(F)$ of π_{F}.

Note that the parallelograms in the above diagram are cartesian. Therefore if $\phi: X \rightarrow E(F)$ is a section of π_{F}, then we have a map $\phi \circ \pi: E \rightarrow E(F)$, whence a $\operatorname{map} \widetilde{\varphi}: E \rightarrow E \times{ }_{X} E(F)$ given by $e \mapsto(e, \phi \circ \pi(e))$. Identifying $E \times_{X} E(F)$ with $E \times{ }_{S} F$, we see that $\widetilde{\varphi}$ is a G-equivariant section of $E \times{ }_{S} F \rightarrow E$, and hence the $\operatorname{map} \varphi=p_{F} \circ \widetilde{\varphi}$ is G-equivariant, where $p_{F}: E \times_{S} F \rightarrow F$ is the projection on to F. Thus the section $\phi: X \rightarrow E(F)$ gives rise to a G-equivariant map $\varphi: E \rightarrow F$. It is easy to see that the two processes are inverses.

To help the reader verify details, we point out that the identification

$$
E \times_{X} E(F)=E \times_{S} F
$$

used above is given by $\left(e,\left[e^{\prime}, f\right]\right) \mapsto(e, g f)$ where g is the unique valued point of G such that $e^{\prime}=e g$.
1.2. The space E / H. Next suppose $H \subset G$ is a closed subgroup scheme over S such that $H \rightarrow S$ is smooth. We wish to say that reductions of structure group of the G-torsor $\pi: E \rightarrow X$ are in one-to-one correspondence with sections of $E / H=$ $E(G / H) \rightarrow X$.

The Problem: Does G / H exist as a scheme? How about E / H ? We did define G / H earlier as an fppf sheaf.

Examples 1.2.1. Regarding the question of representability of quotients by schemes, here are some examples:
(1) If S is the spectrum of a field k, then G / H exists as a smooth quasiprojective variety. If $k \rightarrow K$ is a field extension with K algebraically closed, then $G / H(K)=G(K) / H(K)$. Here is the idea of the proof. One has to find a representation $G \rightarrow G L(V)$, for a finite dimensional k-vector-space V, such that H is the stabilizer of a line L in V. We therefore have an action of G on $\mathbb{P}(V)$. If $x_{0} \in \mathbb{P}(V)$ is the point represented by L, then the stabilizer of x_{0} is H. One shows that G / H can be realised as the G-orbit of x_{0} with its reduced structure and that this reduced orbit is smooth and locally closed in $\mathbb{P}(V)$. Details can be found in [C1, p. 45, Thm. 18.1.1].
(2) In the above case, if H in the above situation is a normal subgroup then G / H is affine [C1, p. 46, Example 18.1.4].
(3) Suppose $G \rightarrow S$ is a reductive group scheme and $H \rightarrow S$ is a parabolic subgroup of G, i.e. $P_{\bar{s}}$ is a parabolic subgroup of $G_{\bar{s}}$, for every $s \in S$ and \bar{s} a geometric point over s. Then it turns out G / P exists as a smooth projective S-scheme [C2, p. 128, Cor. 5.2.8]. Moreover the G-space G / P can be covered by open subschemes which are G-stable and affine over S. Thus if $\pi: E \rightarrow S$ is a G-torsor, $E / P=E(G / P)$ exists as smooth proper scheme over X.

Just as we defined G / H as an fppf-sheaf, we can define E / H as an fppf-sheaf together with natural maps $\varpi: E \rightarrow E / H$ and $\pi_{/ H}: E / H \rightarrow X$. In greater detail, consider the pre sheaf

$$
F:\left(\operatorname{Sch}_{/ X}\right)^{\circ} \rightarrow(\text { Sets })
$$

given by

$$
T \mapsto E(T) / H(T)
$$

as T varies in $\operatorname{Sch}_{/ X}$. Set

$$
E / H=F^{+}
$$

where F^{+}is the sheafification of F with respect to the fppf-topology on $\mathbb{S c h}_{/ X}$. Note that we are working with objects and maps in $\mathbb{S c h}_{/ X}$, and hence $X(T)$ is a singleton set for every $T \in \mathbb{S c h}_{/ X}$. (In particular $X(E)=\{\pi\}$.) One therefore has natural maps of functors $E \rightarrow F$ and $F \rightarrow X$ such that the composite $E \rightarrow F \rightarrow X$ is $\pi: E \rightarrow X$. Sheafifying with respect to the fppf-topology on $\mathbb{S c h}_{/ X}$ and using the fact that E and X are already sheaves, we get a commutative diagram

1.3. Sections of E / H. To understand sections of E / H we need the following Lemma.

Lemma 1.3.1. Suppose $T \in \mathbb{S}^{\text {ch }}{ }_{/ S}, g \in G(T)$, and we have an fpqc-map $t: T^{\prime} \rightarrow T$ such that $g(t) \in H\left(T^{\prime}\right)$. Then $g \in H(T)$.

Proof. It is clear we may assume S is affine (whence so are G and H) by replacing S by an affine open subscheme (such subschemes cover S) and taking inverse images of this open subscheme in all the schemes we are considering ($S G, S, T, T^{\prime}$). Further, without loss of generality, we may assume $T=\operatorname{Spec} A$. We know that there is a quasi-compact open subscheme U of T^{\prime} such that $t(U)=T$. Replacing T^{\prime} by U if necessary, we may assume T^{\prime} is quasi-compact. Finally, replacing T^{\prime} by a finite disjoint union of affine open subschemas if necessary, we may assume $T^{\prime}=\operatorname{Spec} B$. The graph of $g(t): T^{\prime} \rightarrow G$ is a closed subscheme of $T^{\prime} \times_{S} G$. Call this graph Γ^{\prime}. Let the graph of $g: T \rightarrow G$ be $\Gamma \hookrightarrow T \times_{S} G$. Clearly $\Gamma^{\prime}=t_{G}^{-1}(\Gamma)$, where $t_{G}: T^{\prime} \times_{S} G \rightarrow T \times{ }_{S} G$ is the base change of $t: T^{\prime} \rightarrow T$. By our hypothesis, Γ^{\prime} is actually a closed subscheme of $T^{\prime} \times{ }_{S} H$, i.e., we have a hierarchy of inclusions
$\Gamma^{\prime} \hookrightarrow T^{\prime} \times{ }_{S} H \hookrightarrow T^{\prime} \times{ }_{S} G$. We therefore have a hierarchy of surjective maps of $\mathscr{O}_{T^{\prime} \times S G^{\prime}}$-modules given by $\mathscr{O}_{T^{\prime} \times S} G \rightarrow \mathscr{O}_{T^{\prime} \times S H} \rightarrow \mathscr{O}_{\Gamma^{\prime}}$. Since the first arrow and the composite arrow are maps of descent data, and since the arrows are surjective, the second arrow is also a map of descent data. It follows that we have a sequence of surjective $\mathscr{O}_{T \times{ }_{S} G}$-maps $\mathscr{O}_{T \times{ }_{S} G} \rightarrow \mathscr{O}_{T \times{ }_{S} H} \rightarrow \mathscr{O}_{\Gamma}$. (These maps are surjective because t_{G} is faithfully flat.) The last surjection says $\Gamma \hookrightarrow T \times{ }_{S} H$, which is another way of saying $g \in H(T)$.

By the sheafification process described in Section 3 of Lecture 7, a section of the sheaf E / H over $T \in \mathbb{S c h}_{/ X}$ is represented by a pair $\left(T^{\prime} \xrightarrow{p} T,[e]\right)$ where $p: T^{\prime} \rightarrow T$ is an fppf-map in $\mathbb{S c h}_{X}, e$ is a T^{\prime}-valued point of E, and $[e]=e H\left(T^{\prime}\right)$ is the image of e in $E\left(T^{\prime}\right) / H\left(T^{\prime}\right)$. This pair has the property that there is an fppf-map $q: \widetilde{T} \rightarrow T^{\prime \prime}$ such that $q^{*} p_{1}^{*}[e]=q^{*} p_{2}^{*}[e]$. Let $g \in G\left(T^{\prime \prime}\right)$ be the unique element such that $e\left(p_{2}\right)=e\left(p_{1}\right) g$. It follows that $e\left(p_{2} \circ q\right)=e\left(p_{1} \circ q\right) g(q)$. On the other hand, the relation $q^{*} p_{1}^{*}[e]=q^{*} p_{2}^{*}[e]$ is equivalent to saying that $e\left(p_{2} \circ q\right)=e\left(p_{1} \circ q\right) h$ for some (necessarily unique) element $h \in H(\widetilde{T})$. It follows that $g(q)=h$. From the Lemma we conclude that $g \in H\left(T^{\prime \prime}\right)$.

Moreover, by modifying the above argument slightly, pairs $\left(T_{1} \rightarrow T,\left[e_{1}\right]\right)$ and $\left(T_{2} \rightarrow T,\left[e_{2}\right]\right)$ represent the same element of $(E / H)(T)$, precisely when the equation $e_{2}\left(t_{2}\right)=e_{1}\left(t_{1}\right) h$ for some (necessarily unique) $h \in H\left(T_{1} \times_{T} T_{2}\right)$, where $t_{i}: T_{1} \times_{T} T_{2} \rightarrow T_{i}(i=1,2)$ are the two projections.

We have proven the following:
Proposition 1.3.2. Let $T \in \mathbb{S}^{\operatorname{sch}}{ }_{/ X}$. Then elements of $(E / H)(T)$ are represented by pairs $\left(T^{\prime} \xrightarrow{p} T, e\right)$, where $e \in E\left(T^{\prime}\right)$ is an element such that $e\left(p_{2}\right)=e\left(p_{1}\right) h$ for a $T^{\prime \prime}$-valued point h of H. Two such pairs $\left(T_{1}, e_{1}\right)$ and $\left(T_{2}, e_{2}\right)$ represent the same element of $(E / H)(T)$ if and only if $e_{2}\left(t_{2}\right)=e_{1}\left(t_{1}\right) h$ where $t_{i}: T_{1} \times_{T} T_{2} \rightarrow T_{i}$, $i=1,2$, are the projections, and $h \in H\left(T_{1} \times_{T} T_{2}\right)$.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ $(1956 / 57), 182(1958 / 59), 190(1959 / 60), 195(1959 / 60), 212(1960 / 61), 221(1960 / 61), 232$ (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] __ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGAII] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III $]_{1}$ _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA III ${ }_{2}$]_, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
[EGA IV 1$]$ _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGAIV}_{2}\right]$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
$\left[\mathrm{EGAIV}_{3}\right]$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
$\left[\mathrm{EGA} \mathrm{IV}_{4}\right]$ _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[C1] B. Conrad, PDF file alggroups.pdf. Notes typed by Sam Litchenstein http://math.stanford.edu/~conrad/249APage/handouts/alggroups.pdf
[C2] - Reductive group schemes (SGA summer school 2011) http://math.stanford.edu/~conrad/papers/luminysga3.pdf
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: October 24, 2012.
 ${ }^{1} R$ can be identified with $E \times_{X} E \times_{S} F$ and the projections q_{1} and q_{2} to $E \times_{S} F$ by the assignments $\left(e_{1}, e_{2}, f\right) \mapsto\left(e_{1}, g_{u}\left(e_{1}, e_{2}\right) f\right)$ and $\left(e_{1}, e_{2}, f\right) \mapsto\left(e_{2}, f\right)$ respectively. Here the map $g_{u}: E \times_{X} E \rightarrow G$ is the transition function corresponding to the trivialisation of $E \rightarrow X$ by the fpqc-covering $E \rightarrow X$ and the diagonal section of $p_{1}: E \times_{X} E \rightarrow E$.

