LECTURE 20

1. Trivialisations again

Let X € Sch/g and let 7: E — X be a G-torsor. Recall Lemma 2.1.4 from
Lecture 14, namely: Let ey, eo two sections of w. Then there exists a unique element
9., € G(X) such that

€2 = €10,
Moreover, if ¢¥,,: Gx == Gx is the G-equivariant isomorphism of X-schemes
given by 1, = Y 1t othe, then 1, is described by (z, g) — (x, g,,(x)g) for valued
points x of X and g of G having the same source.

We can make the same statement about sections of principal bundles. So sup-
pose G is a topological group. As usual assume, for the rest of this section, that
all topological spaces, including G, are Hausdorff, and all group actions are con-
tinuous. Sections of principal bundles are assumed continuous unless otherwise
stated. Suppose m: E — X is a principal G-bundle. We know that £ — X is
trivial if and only if it has a section o: X — F and trivialisations 0: Gx =~ FE
are in bijective correspondence with such sections. Indeed given a trivialization 6,
the canonical identity section of Gx — X translates to a section of £ — X, and
conversely a section o: X — F gives rise to the isomorphism ¢, : Gx —= FE given
by (z, g) — o(x)g. Let §;: Gx == E, i = 1,2, be two isomorphisms of principal
G-bundles, and 0;,: X — FE the corresponding sections. Let g,,: X — G be the
continuous map such that

1

o2(z) = 01(2)g,, (2),
and let ¢,,Gx = Gx be the automorphism of principal G bundles given by
¥, = 07 00;. Then g,, can also be characterized as the continuous map such that
¥, 18 (2, g) = (z, 9,,(x)g). In other words, if 61 (z, g1) = 02(z, g2) then

91 = 9.5(2)g2,
whereas,
o3(x) = 01(2)g,, (2)-
Note that 01(x, g1) = 02(x, g2) is equivalent to ¥, (z, g2) = (z, g1).

2. Reduction of structure group for G-torsors

Now suppose X € Sch/g and m: E — X is a G-torsor. Let H C G be a closed
subscheme of G smooth over S. We say the structure group of F is reducible to
H if there exists an fpqec-map X’ — X and a trivialization 6: Gx: — FEx- such
that the transition function

go: X" =G
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is factors through H:
X ge G

N\

H
This is equivalent to saying that for each T € Sch/g, go(T): X" (T) — G(T') takes
values in the subgroup H(T') of G(T).
Suppose H! (X, Gx) and H'(X, Hx) are the first cohomology sets for the group
schemes G and H respectively, and

h.: HY(X, Hx) — HY(X, Gx)

the natural map. Let 7: E — X be a G-torsor amd ¢ € H'(X, G x) be the element
corresponding to £ — X. Then the structure group of 7: E — X is reducible to
H if and only if £ in the image of h., i.e., ( = h.& for some ¢ € HY(X, Hx). A
choice of such a £ is a reduction of the structure group of the G-torsor £ — X
to H. Note, if £ € HY(X, Hy) is a reduction of the structure group of E to H,
then & gives rise to a H-torsor, p: P — X and a H-equivariant closed immersion
i: P — FE of X-schemes. The latter data nails &.

We wish to characterize reductions of structure group of F to H by sections of
E(G/H) — X (or E/H — X, since (hopefuly) E(G/H) = E/H as in the classical
sutuation).

Here are the possible problems one could encounter:

(1) G/H may not exist as an S-scheme.
(2) Even if it exists, G/H may not be a locally quasi-affine space over S
(3) E/H may not exist as a scheme.

2.1. The space G/H. First consider the presheaf F': (Sch,g)° — Sets on Sch/g
given by

T—GT)/H(T).
We point out that for any 7" € Sch g, the set S(T) is a single element set, and hence
we have map of presheaves F' — 5. We also have a map of presheaves G — F' and
the following diagram commutes:

(2.1.1) G
S<~——F
Definition 2.1.2. The quotient G/H is the fppf-sheafification of the pre sheaf F.

Note that the maps G — F and F — S in (2.1.1) gives rise to the maps
pa: G — G/H and ty: G/H — S such that the diagram

(2.1.3) G
|
commutes.

Suppose .# is an fppf-sheaf on Sch,g such that G acts trivially on the right on
Z (i.e., G(T) acts trivially on the right on .7 (T") for every T' € Sch,g) and we have
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a G-equivariant map ¢: G — % for the right action of G on G. Then for each T
we have a unique map ¥(T"): G(T)/H(T) — % (T) such that the following diagram
commutes

(2.1.4) a2 7(1)

S

G(T)/H(T)

It is evident that ¢(7T') is functorial in T" as T varies over Sch,g. By the universal
property of sheafification (or by using the functoriality of sheafifications) we get a
unique map

o/p: G/H = F

such that the following diagram commutes:

(2.1.5) G—2s>7
P
G/H

3. The Yoneda Lemma

The major point of this section is to interpret elements of F'(X) (for X € Sch/g
and F a contrvariant functor Sets-valued functor on Sch,g) as maps

X — F.

Here X in the above relation is identified with the functor hx and the arrow X — F
as a natural transformation of functors. Note that if ' = hy where Y € Sch/g,
then such a correspondence is a tautology if we identify hy with Y.

3.1. Let Sch /s denote the category of contravariant Sets-valued functors on Schg,
i.e the objects are contravariant functors on Sch,s taking values in Sets and
morphisms are natural transformations of such functors. Recall that the functor
X — hx, for X € Sch/g is a fully faithful embedding of Sch g into g(;l/s.

Let F € @1/5 (i.e., F': (Sch;g)® — Sets is a functor) and X € Sch,g. Note
that hx(X) = Homsen,; (X, X) has a distinguished element, namely the identity
map 1x. Therefore a map

p:hx = F
in gch/S gives rise to an element §, € F(X), namely the image under ¢(X) of 1x.

The process can be reversed. To see this let £ € F'(X). For a set A, we have a
map

ec(A): Homgets (F(X), A) = A
given by “evaluation at £”, i.e., the map f — f(§) for f: F(X) — A. Note that

e¢(A) is functorial in A, and gives a functorial map

e¢: Homgets (F(X), —) — 1gets
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of endo-functors on Sets. We therefore have a sequence of natural transformations
hX = HOH?lgCh/S(—7 X) _— HOIIlSetS(F()()7 F(—))

ec(F(-)) Il

Let N

f: hx — F
be the above composite. It is easy to check that the assignments ¢ — §, and § — E
are inverses of each other. Hence we get bijective correspondence of sets

(3.1.1) Homgy, (hx. F) = F(X)

given by ¢ — &,. The correspondence (3.1.1) is called the Yoneda correspondence.
We often do not distinguish between ¢ € F(X) and the map EA: hx — F, or
between hx and X. Hence £ € F(X) is thought of as a map &: X — F. If
Y € Sch)g and F' = hy (i.e., ' =Y in line with our identifications) then we are
simply stating tlle\obvious, or, more precisely, restating the fully faithful embedding
h(—y: Sch;g — Sch,g given by Y > hy.
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