LECTURE 2

All rings are commutative with a multiplicative identity, and all ring maps (i.e., ring homomorphisms) are unital (i.e., 1 maps to 1). If A is a ring, then by an A-algebra we always mean a commutative A-algebra.

1. Descent data for Modules

1.1. Notations. For any ring A the category of A-modules will be denoted Mod_A. Now suppose B is an A-algebra and M is an A-module. Then the map $M \otimes_A B \to B \otimes_A M$ of B-modules given by $m \otimes b \mapsto b \otimes m$ will be denoted ι_M . Note that we have:

 $\iota_M \colon M \otimes_B A \xrightarrow{\sim} B \otimes_A M.$

With A and B as above, and $M \in Mod_A$, set

(i)
$$B^{\otimes r} := \underbrace{B \otimes_A \cdots \otimes_A B}_{r \text{ times}}$$
.
(ii) $\alpha_M : M \to B \otimes_A M, \ m \mapsto 1 \otimes m$.

1.2. Descent data. Fix an A-algebra B as above. Every B-module N gives rise to two $B^{\otimes 2}$ -modules, namely

- (i) $N \otimes_A B$ with module structure $(b_1 \otimes b_2)(n \otimes b) = (b_1 n) \otimes (b_2 b)$;
- (ii) $B \otimes_A N$ with module structure $(b_1 \otimes b_2)(b \otimes n) = (b_1 b) \otimes (b_2 n)$.

Similarly we have three $B^{\otimes 3}$ -modules, namely $N \otimes_A B \otimes_A B$, $B \otimes_A N \otimes_A B$, and $B \otimes_A B \otimes_A N$, the $B^{\otimes 3}$ -module structures being obvious and along the lines of the $B^{\otimes 2}$ -module structures described above. Suppose we have a $B^{\otimes 2}$ -map

$$\psi\colon N\otimes_A B\to B\otimes_A N$$

We have three maps induced by ψ described as follows:

(1.2.1)

$$\begin{split} \psi_{23} \colon B \otimes_A N \otimes_A B \to B \otimes_A B \otimes_A N; & \psi_{23} = \mathrm{id}_B \otimes \psi, \\ \psi_{13} \colon N \otimes_A B \otimes_A B \to B \otimes_A B \otimes_A N; & \psi_{13} = (\mathrm{id}_B \otimes \iota_N) \circ (\psi \otimes \mathrm{id}_B) \circ (\mathrm{id}_N \otimes \iota_B), \\ \psi_{12} \colon N \otimes_A B \otimes_A B \to B \otimes_A N \otimes_A B; & \psi_{12} = \psi \otimes \mathrm{id}_B. \end{split}$$

Note that if $\psi(n \otimes b) = \sum_{\alpha} b_{\alpha}^* \otimes n_{\alpha}^*$, then $\psi_{13}(n \otimes b_1 \otimes b) = \sum_{\alpha} b_{\alpha}^* \otimes b_1 \otimes n_{\alpha}^*$.

Definition 1.2.2. Let $N \in \text{Mod}_B$. A *descent datum* on N is an isomorphism $\psi: N \otimes_A B \xrightarrow{\sim} B \otimes_A N$ such that with $\psi_{12}, \psi_{13}, \psi_{23}$ as in (1.2.1), we have

$$\psi_{13} = \psi_{23} \circ \psi_{12}$$

as maps from $N \otimes_A B \otimes_A B$ to $B \otimes_A B \otimes_A N$. (This is the so-called *cocycle rule.*) The category of *B*-modules with descent data (for *A*) is the category $Mod_{A\to B}$

Date: Aug 22, 2012.

LECTURE 2

whose objects are pairs (N, ψ) with $N \in Mod_B$ and ψ a descent datum, and whose morphisms $(N, \psi) \xrightarrow{\beta} (N', \psi')$ are *B*-maps $\beta \colon N \to N'$ such that the diagram

$$\begin{array}{c|c} N \otimes_A B & \stackrel{\psi}{\longrightarrow} B \otimes_A N \\ & \beta \otimes \operatorname{id}_B & & & & & \\ N' \otimes_A B & \stackrel{\psi'}{\longrightarrow} B \otimes_A N' \end{array}$$

commutes.

Given an A-module M, there is a very natural descent datum on $B \otimes_A M$, namely the map

$$\psi_M \colon (B \otimes_A M) \otimes_A B \to B \otimes_A (B \otimes_A M)$$

given by $b \otimes m \otimes b' \mapsto b \otimes b' \otimes m$.

Proposition 1.2.3. $(B \otimes_A M, \psi_M) \in \text{Mod}_{A \to B}$. Moreover, if $M \to M'$ is an A-map then the induced map $\beta \colon B \otimes_A M \to B \otimes_A M'$ defines a map in $\text{Mod}_{A \to B}$.

This is an easy (and obvious) computation, which we leave to the reader. Thus the assignment $M \mapsto (B \otimes_A M, \psi_M)$ gives us a functor

$$F: \operatorname{Mod}_A \to \operatorname{Mod}_{A \to B}.$$

The theorem of faithful flat descent for affine schemes, i.e. the theorem that follows, says that this assignment is an equivalence of categories.

Theorem 1.2.4. Suppose B is faithfuly flat over A. Then the functor $F: \operatorname{Mod}_A \to \operatorname{Mod}_{A \to B}$ defined above is an equivalence of categories.

We will prove Theorem 1.2.4 in the next lecture. Loc.cit. asserts that for a *B*-module *N* to be of the form $B \otimes_A M$ for some *A*-module *M*, it is necessary and sufficient for *N* to carry a descent datum $\psi \colon N \otimes_A B \xrightarrow{\sim} B \otimes_A N$. In this case the module $M \in \text{Mod}_A$ is unique up to isomorphism. In fact, as we will see later,

$$M = \{ n \in N \mid 1 \otimes n = \psi(n \otimes 1) \}.$$

The proof of *loc.cit.* is not difficult, being essentially a familiar Cech cohomology argument, suitably modified to the faithfully flat situation.

2. The Čech complex for faithfully flat algebras

Throughout this section we fix a ring A, an A-module M, and a faithfully flat A-algebra B.

2.1. Define a sequence of *A*-maps

$$(2.1.1) \qquad 0 \to M \xrightarrow{\alpha_M} B \otimes_A M \xrightarrow{d^0} B^{\otimes 2} \otimes_A M \xrightarrow{d^1} \dots \\ \dots \xrightarrow{d^{r-2}} B^{\otimes r} \otimes_A M \xrightarrow{d^{r-1}} B^{\otimes r+1} \otimes_A M \xrightarrow{d^r} \dots$$

where $d^r = \sum_i (-1)^i e_i$ and

 $e_i(b_0\otimes\cdots\otimes b_r\otimes m)=b_o\otimes\cdots\otimes b_{i-1}\otimes 1\otimes b_i\otimes\ldots b_r\otimes m.$

For consistency write $d^{-1} = \alpha_M$ and $B^{\otimes 0} = A$. The usual arguments give

$$d^r \circ d^{r-1} = 0, \qquad r \ge 0$$

whence (2.1.1) defines a complex of A-modules which we denote $C^{\bullet}_{B/A}(M)$.

Proposition 2.1.2. $C^{\bullet}_{B/A}(M)$ is exact.

Proof. Suppose we have a "retract" of the algebra structure map $\alpha_A \colon A \to B$, i.e. a map of rings $g \colon B \to A$ such that the composite $g \circ \alpha_A$ is the identity. (In other words, suppose Spec $B \to$ Spec A has a section.) For $r \geq -1$ define

$$k_r \colon B^{\otimes r+2} \otimes_A M \to B^{\otimes r+1} \otimes_A M$$

by

$$b_0 \otimes \cdots \otimes b_{r+1} \otimes m \mapsto g(b_0)b_1 \otimes \cdots \otimes b_{r+1} \otimes m.$$

Set $k_{-2} = 0$. One checks that

$$k_r d^r + d^{r-1} k_{r-1} = 1$$

for $r \geq -1$. Thus $\{k_r\}$ is a contracting homotopy on $C^{\bullet}_{B/A}(M)$, whence, in this case, the assertion follows.

For an A-algebra A', let $B' := B \otimes_A A'$. Then, as is easily checked, for $r \ge 1$ $B' \otimes_{A'} B' \otimes_{A'} \cdots \otimes_{A'} B' = B^{\otimes r} \otimes_A A'$, where the number of tensor factors on the left is r. In other words $B'^{\otimes r} = B^{\otimes r} \otimes_A A'$. This identity is easily seen to hold for r = 0 and r = -1 also. It is then obvious that

$$(*) C^{\bullet}_{B/A}(M) \otimes_A A' = C^{\bullet}_{B'/A'}(M \otimes_A A')$$

Now suppose A' is faithfully flat over A, and $C^{\bullet}_{B'/A'}(M \otimes_A A')$ is exact. Then by (*) and faithful flatness, it follows that $C^{\bullet}_{B/A}(M)$ is also exact. Set A' = B. Then $B' = B^{\otimes 2}$, and the structure map $\alpha_{A'} \colon A' \to B'$ is $b \mapsto b \otimes 1$. Clearly the map $g' \colon B' \to A'$ given by $b_1 \otimes b_2 \mapsto b_1 b_2$ is a retract of $\alpha_{A'}$. Thus, as we saw earlier in this proof, $C^{\bullet}_{B'/A'}(M \otimes_A A')$ is exact. But A' is faithfully flat over A, since A' = B. Hence we are done.

Remark 2.1.3. Note that $d^0: B \otimes_A M \to B^{\otimes 2} \otimes_A M$ is given by

$$b \otimes m \mapsto 1 \otimes b \otimes m - b \otimes 1 \otimes m$$
.

Indeed, by definition, $d^0 = e_0 - e_1$ where $e_0(b \otimes m) = 1 \otimes b \otimes m$ and $e_1(b \otimes m) = b \otimes 1 \otimes m$. It follows that

$$(2.1.3.1) M = \ker (e_0 - e_1)$$