LECTURE 2

All rings are commutative with a multiplicative identity, and all ring maps (i.e., ring homomorphisms) are unital (i.e., 1 maps to 1). If A is a ring, then by an A-algebra we always mean a commutative A-algebra.

1. Descent data for Modules

1.1. Notations. For any ring A the category of A-modules will be denoted Mod_{A}. Now suppose B is an A-algebra and M is an A-module. Then the map $M \otimes_{A} B \rightarrow$ $B \otimes_{A} M$ of B-modules given by $m \otimes b \mapsto b \otimes m$ will be denoted ι_{M}. Note that we have:

$$
\iota_{M}: M \otimes_{B} A \xrightarrow{\sim} B \otimes_{A} M .
$$

With A and B as above, and $M \in \operatorname{Mod}_{A}$, set
(i) $B^{\otimes r}:=\underbrace{B \otimes_{A} \cdots \otimes_{A} B}_{r \text { times }}$.
(ii) $\alpha_{M}: M \rightarrow B \otimes_{A} M, m \mapsto 1 \otimes m$.
1.2. Descent data. Fix an A-algebra B as above. Every B-module N gives rise to two $B^{\otimes 2}$-modules, namely
(i) $N \otimes_{A} B$ with module structure $\left(b_{1} \otimes b_{2}\right)(n \otimes b)=\left(b_{1} n\right) \otimes\left(b_{2} b\right)$;
(ii) $B \otimes_{A} N$ with module structure $\left(b_{1} \otimes b_{2}\right)(b \otimes n)=\left(b_{1} b\right) \otimes\left(b_{2} n\right)$.

Similarly we have three $B^{\otimes 3}$-modules, namely $N \otimes_{A} B \otimes_{A} B, B \otimes_{A} N \otimes_{A} B$, and $B \otimes_{A} B \otimes_{A} N$, the $B^{\otimes 3}$-module structures being obvious and along the lines of the $B^{\otimes 2}$-module structures described above. Suppose we have a $B^{\otimes 2}$-map

$$
\psi: N \otimes_{A} B \rightarrow B \otimes_{A} N
$$

We have three maps induced by ψ described as follows:
$\psi_{23}: B \otimes_{A} N \otimes_{A} B \rightarrow B \otimes_{A} B \otimes_{A} N ; \quad \psi_{23}=\operatorname{id}_{B} \otimes \psi$,
$\psi_{13}: N \otimes_{A} B \otimes_{A} B \rightarrow B \otimes_{A} B \otimes_{A} N ; \quad \psi_{13}=\left(\operatorname{id}_{B} \otimes_{\iota_{N}}\right) \circ\left(\psi \otimes \mathrm{id}_{B}\right) \circ\left(\mathrm{id}_{N} \otimes \iota_{B}\right)$,
$\psi_{12}: N \otimes_{A} B \otimes_{A} B \rightarrow B \otimes_{A} N \otimes_{A} B ; \quad \psi_{12}=\psi \otimes \operatorname{id}_{B}$.
Note that if $\psi(n \otimes b)=\sum_{\alpha} b_{\alpha}^{*} \otimes n_{\alpha}^{*}$, then $\psi_{13}\left(n \otimes b_{1} \otimes b\right)=\sum_{\alpha} b_{\alpha}^{*} \otimes b_{1} \otimes n_{\alpha}^{*}$.
Definition 1.2.2. Let $N \in \operatorname{Mod}_{B}$. A descent datum on N is an isomorphism $\psi: N \otimes_{A} B \xrightarrow{\sim} B \otimes_{A} N$ such that with $\psi_{12}, \psi_{13}, \psi_{23}$ as in (1.2.1), we have

$$
\psi_{13}=\psi_{23} \circ \psi_{12}
$$

as maps from $N \otimes_{A} B \otimes_{A} B$ to $B \otimes_{A} B \otimes_{A} N$. (This is the so-called cocycle rule.) The category of B-modules with descent data (for A) is the category $\operatorname{Mod}_{A \rightarrow B}$

[^0]whose objects are pairs (N, ψ) with $N \in \operatorname{Mod}_{B}$ and ψ a descent datum, and whose morphisms $(N, \psi) \xrightarrow{\beta}\left(N^{\prime}, \psi^{\prime}\right)$ are B-maps $\beta: N \rightarrow N^{\prime}$ such that the diagram

commutes.
Given an A-module M, there is a very natural descent datum on $B \otimes_{A} M$, namely the map
$$
\psi_{M}:\left(B \otimes_{A} M\right) \otimes_{A} B \rightarrow B \otimes_{A}\left(B \otimes_{A} M\right)
$$
given by $b \otimes m \otimes b^{\prime} \mapsto b \otimes b^{\prime} \otimes m$.
Proposition 1.2.3. $\left(B \otimes_{A} M, \psi_{M}\right) \in \operatorname{Mod}_{A \rightarrow B}$. Moreover, if $M \rightarrow M^{\prime}$ is an A-map then the induced map $\beta: B \otimes_{A} M \rightarrow B \otimes_{A} M^{\prime}$ defines a map in $\operatorname{Mod}_{A \rightarrow B}$.

This is an easy (and obvious) computation, which we leave to the reader. Thus the assignment $M \mapsto\left(B \otimes_{A} M, \psi_{M}\right)$ gives us a functor

$$
F: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{A \rightarrow B} .
$$

The theorem of faithful flat descent for affine schemes, i.e. the theorem that follows, says that this assignment is an equivalence of categories.

Theorem 1.2.4. Suppose B is faithfuly flat over A. Then the functor $F: \operatorname{Mod}_{A} \rightarrow$ $\operatorname{Mod}_{A \rightarrow B}$ defined above is an equivalence of categories.

We will prove Theorem 1.2.4 in the next lecture. Loc.cit. asserts that for a B module N to be of the form $B \otimes_{A} M$ for some A-module M, it is necessary and sufficent for N to carry a descent datum $\psi: N \otimes_{A} B \xrightarrow{\sim} B \otimes_{A} N$. In this case the $\operatorname{module} M \in \operatorname{Mod}_{A}$ is unique up to isomorphism. In fact, as we will see later,

$$
M=\{n \in N \mid 1 \otimes n=\psi(n \otimes 1)\} .
$$

The proof of loc.cit. is not difficult, being essentially a familiar Cech cohomology argument, suitably modified to the faithfully flat situation.

2. The Cech complex for faithfully flat algebras

Throughout this section we fix a ring A, an A-module M, and a faithfully flat A-algebra B.
2.1. Define a sequence of A-maps

$$
\begin{align*}
& 0 \rightarrow M \xrightarrow{\alpha_{M}} B \otimes_{A} M \xrightarrow{d^{0}} B^{\otimes 2} \otimes_{A} M \xrightarrow{d^{1}} \ldots \tag{2.1.1}\\
& \ldots \xrightarrow{d^{r-2}} B^{\otimes r} \otimes_{A} M \xrightarrow{d^{r-1}} B^{\otimes r+1} \otimes_{A} M \xrightarrow{d^{r}} \ldots
\end{align*}
$$

where $d^{r}=\sum_{i}(-1)^{i} e_{i}$ and

$$
e_{i}\left(b_{0} \otimes \cdots \otimes b_{r} \otimes m\right)=b_{o} \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_{i} \otimes \ldots b_{r} \otimes m
$$

For consistency write $d^{-1}=\alpha_{M}$ and $B^{\otimes 0}=A$. The usual arguments give

$$
d^{r} \circ d^{r-1}=0, \quad r \geq 0
$$

whence (2.1.1) defines a complex of A-modules which we denote $C_{B / A}^{\bullet}(M)$.

Proposition 2.1.2. $C_{B / A}^{\bullet}(M)$ is exact.
Proof. Suppose we have a "retract" of the algebra structure map $\alpha_{A}: A \rightarrow B$, i.e. a map of rings $g: B \rightarrow A$ such that the composite $g \circ \alpha_{A}$ is the identity. (In other words, suppose $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ has a section.) For $r \geq-1$ define

$$
k_{r}: B^{\otimes r+2} \otimes_{A} M \rightarrow B^{\otimes r+1} \otimes_{A} M
$$

by

$$
b_{0} \otimes \cdots \otimes b_{r+1} \otimes m \mapsto g\left(b_{0}\right) b_{1} \otimes \cdots \otimes b_{r+1} \otimes m
$$

Set $k_{-2}=0$. One checks that

$$
k_{r} d^{r}+d^{r-1} k_{r-1}=1
$$

for $r \geq-1$. Thus $\left\{k_{r}\right\}$ is a contracting homotopy on $C_{B / A}^{\bullet}(M)$, whence, in this case, the assertion follows.

For an A-algebra A^{\prime}, let $B^{\prime}:=B \otimes_{A} A^{\prime}$. Then, as is easily checked, for $r \geq 1$ $B^{\prime} \otimes_{A^{\prime}} B^{\prime} \otimes_{A^{\prime}} \cdots \otimes_{A^{\prime}} B^{\prime}=B^{\otimes r} \otimes_{A} A^{\prime}$, where the number of tensor factors on the left is r. In other words $B^{\prime \otimes r}=B^{\otimes r} \otimes_{A} A^{\prime}$. This identity is easily seen to hold for $r=0$ and $r=-1$ also. It is then obvious that

$$
\begin{equation*}
C_{B / A}^{\bullet}(M) \otimes_{A} A^{\prime}=C_{B^{\prime} / A^{\prime}}^{\bullet}\left(M \otimes_{A} A^{\prime}\right) \tag{*}
\end{equation*}
$$

Now suppose A^{\prime} is faithfully flat over A, and $C_{B^{\prime} / A^{\prime}}^{\bullet}\left(M \otimes_{A} A^{\prime}\right)$ is exact. Then by $(*)$ and faithful flatness, it follows that $C_{B / A}^{\bullet}(M)$ is also exact. Set $A^{\prime}=B$. Then $B^{\prime}=B^{\otimes 2}$, and the structure map $\alpha_{A^{\prime}}: A^{\prime} \rightarrow B^{\prime}$ is $b \mapsto b \otimes 1$. Clearly the map $g^{\prime}: B^{\prime} \rightarrow A^{\prime}$ given by $b_{1} \otimes b_{2} \mapsto b_{1} b_{2}$ is a retract of $\alpha_{A^{\prime}}$. Thus, as we saw earlier in this proof, $C_{B^{\prime} / A^{\prime}}^{\bullet}\left(M \otimes_{A} A^{\prime}\right)$ is exact. But A^{\prime} is faithfully flat over A, since $A^{\prime}=B$. Hence we are done.

Remark 2.1.3. Note that $d^{0}: B \otimes_{A} M \rightarrow B^{\otimes 2} \otimes_{A} M$ is given by

$$
b \otimes m \mapsto 1 \otimes b \otimes m-b \otimes 1 \otimes m
$$

Indeed, by definition, $d^{0}=e_{0}-e_{1}$ where $e_{0}(b \otimes m)=1 \otimes b \otimes m$ and $e_{1}(b \otimes m)=$ $b \otimes 1 \otimes m$. It follows that

$$
\begin{equation*}
M=\operatorname{ker}\left(e_{0}-e_{1}\right) \tag{2.1.3.1}
\end{equation*}
$$

[^0]: Date: Aug 22, 2012.

