
LECTURE 2

All rings are commutative with a multiplicative identity, and all ring maps (i.e.,
ring homomorphisms) are unital (i.e., 1 maps to 1). If A is a ring, then by an
A-algebra we always mean a commutative A-algebra.

1. Descent data for Modules

1.1. Notations. For any ring A the category of A-modules will be denoted ModA.
Now suppose B is an A-algebra and M is an A-module. Then the map M ⊗AB →
B ⊗AM of B-modules given by m⊗ b 7→ b⊗m will be denoted ιM . Note that we
have:

ιM : M ⊗B A −→∼ B ⊗AM.

With A and B as above, and M ∈ ModA, set

(i) B⊗r := B ⊗A · · · ⊗A B︸ ︷︷ ︸
r times

.

(ii) αM : M → B ⊗AM , m 7→ 1⊗m.

1.2. Descent data. Fix an A-algebra B as above. Every B-module N gives rise
to two B⊗2-modules, namely

(i) N ⊗A B with module structure (b1 ⊗ b2)(n⊗ b) = (b1n)⊗ (b2b);
(ii) B ⊗A N with module structure (b1 ⊗ b2)(b⊗ n) = (b1b)⊗ (b2n).

Similarly we have three B⊗3-modules, namely N ⊗A B ⊗A B, B ⊗A N ⊗A B, and
B⊗AB⊗AN , the B⊗3-module structures being obvious and along the lines of the
B⊗2-module structures described above. Suppose we have a B⊗2-map

ψ : N ⊗A B → B ⊗A N.

We have three maps induced by ψ described as follows:

ψ23 : B ⊗A N ⊗A B → B ⊗A B ⊗A N ; ψ23 = idB ⊗ ψ,
(1.2.1)

ψ13 : N ⊗A B ⊗A B → B ⊗A B ⊗A N ; ψ13 = (idB ⊗ ιN ) ◦ (ψ ⊗ idB) ◦ (idN ⊗ ιB),

ψ12 : N ⊗A B ⊗A B → B ⊗A N ⊗A B; ψ12 = ψ ⊗ idB .

Note that if ψ(n⊗ b) =
∑
α b
∗
α ⊗ n∗α, then ψ13(n⊗ b1 ⊗ b) =

∑
αb
∗
α ⊗ b1 ⊗ n∗α.

Definition 1.2.2. Let N ∈ ModB . A descent datum on N is an isomorphism
ψ : N ⊗A B −→∼ B ⊗A N such that with ψ12, ψ13, ψ23 as in (1.2.1), we have

ψ13 = ψ23 ◦ψ12

as maps from N ⊗A B ⊗A B to B ⊗A B ⊗A N . (This is the so-called cocycle rule.)
The category of B-modules with descent data (for A) is the category ModA→B
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whose objects are pairs (N, ψ) with N ∈ModB and ψ a descent datum, and whose

morphisms (N, ψ)
β−→ (N ′, ψ′) are B-maps β : N → N ′ such that the diagram

N ⊗A B
ψ //

β⊗idB

��

B ⊗A N

idB⊗β
��

N ′ ⊗A B
ψ′
// B ⊗A N ′

commutes.

Given an A-module M , there is a very natural descent datum on B⊗AM , namely
the map

ψM : (B ⊗AM)⊗A B → B ⊗A (B ⊗AM)

given by b⊗m⊗ b′ 7→ b⊗ b′ ⊗m.

Proposition 1.2.3. (B ⊗A M, ψM ) ∈ ModA→B. Moreover, if M → M ′ is an
A-map then the induced map β : B ⊗AM → B ⊗AM ′ defines a map in ModA→B.

This is an easy (and obvious) computation, which we leave to the reader. Thus
the assignment M 7→ (B ⊗AM, ψM ) gives us a functor

F : ModA → ModA→B .

The theorem of faithful flat descent for affine schemes, i.e. the theorem that follows,
says that this assignment is an equivalence of categories.

Theorem 1.2.4. Suppose B is faithfuly flat over A. Then the functor F : ModA →
ModA→B defined above is an equivalence of categories.

We will prove Theorem 1.2.4 in the next lecture. Loc.cit. asserts that for a B-
module N to be of the form B ⊗A M for some A-module M , it is necessary and
sufficent for N to carry a descent datum ψ : N ⊗AB −→∼ B⊗AN . In this case the
module M ∈ ModA is unique up to isomorphism. In fact, as we will see later,

M = {n ∈ N | 1⊗ n = ψ(n⊗ 1)}.
The proof of loc.cit. is not difficult, being essentially a familiar Čech cohomology
argument, suitably modified to the faithfully flat situation.

2. The Čech complex for faithfully flat algebras

Throughout this section we fix a ring A, an A-module M , and a faithfully flat
A-algebra B.

2.1. Define a sequence of A-maps

0→M
αM−−→ B ⊗AM

d0−→ B⊗2 ⊗AM
d1−→ . . .(2.1.1)

. . .
dr−2

−−−→ B⊗r ⊗AM
dr−1

−−−→ B⊗r+1 ⊗AM
dr−→ . . .

where dr =
∑
i(−1)iei and

ei(b0 ⊗ · · · ⊗ br ⊗m) = bo ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . br ⊗m.
For consistency write d−1 = αM and B⊗0 = A. The usual arguments give

dr ◦dr−1 = 0, r ≥ 0

whence (2.1.1) defines a complex of A-modules which we denote C•B/A(M).
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Proposition 2.1.2. C•B/A(M) is exact.

Proof. Suppose we have a “retract” of the algebra structure map αA : A→ B, i.e.
a map of rings g : B → A such that the composite g ◦αA is the identity. (In other
words, suppose SpecB → SpecA has a section.) For r ≥ −1 define

kr : B⊗r+2 ⊗AM → B⊗r+1 ⊗AM
by

b0 ⊗ · · · ⊗ br+1 ⊗m 7→ g(b0)b1 ⊗ · · · ⊗ br+1 ⊗m.
Set k−2 = 0. One checks that

krd
r + dr−1kr−1 = 1

for r ≥ −1. Thus {kr} is a contracting homotopy on C•B/A(M), whence, in this

case, the assertion follows.
For an A-algebra A′, let B′ := B ⊗A A′. Then, as is easily checked, for r ≥ 1

B′ ⊗A′ B′ ⊗A′ · · · ⊗A′ B′ = B⊗r ⊗A A′, where the number of tensor factors on the
left is r. In other words B′⊗r = B⊗r ⊗A A′. This identity is easily seen to hold for
r = 0 and r = −1 also. It is then obvious that

(∗) C•B/A(M)⊗A A′ = C•B′/A′(M ⊗A A
′)

Now suppose A′ is faithfully flat over A, and C•B′/A′(M ⊗A A
′) is exact. Then by

(∗) and faithful flatness, it follows that C•B/A(M) is also exact. Set A′ = B. Then

B′ = B⊗2, and the structure map αA′ : A
′ → B′ is b 7→ b ⊗ 1. Clearly the map

g′ : B′ → A′ given by b1 ⊗ b2 7→ b1b2 is a retract of αA′ . Thus, as we saw earlier in
this proof, C•B′/A′(M ⊗AA

′) is exact. But A′ is faithfully flat over A, since A′ = B.

Hence we are done. �

Remark 2.1.3. Note that d0 : B ⊗AM → B⊗2 ⊗AM is given by

b⊗m 7→ 1⊗ b⊗m− b⊗ 1⊗m.
Indeed, by definition, d0 = e0 − e1 where e0(b ⊗m) = 1 ⊗ b ⊗m and e1(b ⊗m) =
b⊗ 1⊗m. It follows that

(2.1.3.1) M = ker (e0 − e1)


