
LECTURE 19

1. Cohomologous 1-cocycles and isomorphisms of descent data

Recall that if G is a (Hausdorff) topological group and X is a Hausdorff space,

then two G-valued 1-cocycles (g
(1)
αβ ) and (g

(2)
αβ ) (for the same open cover U = {Uα}

of X) are cohomologous if, for each index α, there are continuous maps tα : UαG
such that for every x ∈ Uαβ and every pair of indices (α, β) we have the relationship

g
(2)
αβ (x)tβ(x) = tα(x)g

(1)
αβ (x). In the schemes case, working with torsors for the group

scheme G→ S, this is exactly analogous to the notion of a G-equivariant of descent
data as we shall see.

1.1. The topological case. In this subsection G is a topological space, and all
topological spaces occurring (including G) are Hausdorff, and all group actions are
continuous.

Let X be a topological space. If

g : U → G

is a continuous map from an open subset U of X, let

g̃ : U ×G→ U ×G

be the map

(u, g∗) 7→ (u, g(u)g∗).

Note that g̃ is an automorphism of the trivial principal G-bundle GU → U . Con-
versely, as is well known, every principal G-bundle automorphism of GU must of
if the form g̃ for some continuous map g : U → G. Indeed, if ψ : GU −→∼ GU is
such an automorphism, and ε ∈ G the identity element, then for every u ∈ U
we have g(u) ∈ G determined by second coordinate of ψ(u, ε). In other words
ψ(u, ε) = (u, g(u)). G-equivariant then forces the identity ψ = g̃. Moreover such a
g is unique for a given ψ as is clear from the above considerations.

Now suppose U = {Uα} is an open cover of X. Let (g
(1)
αβ ) and (g

(2)
αβ ) be G-valued

1-cocycles for this cover. Recall that the give isomorphic principal G-bundles if and
only if they are cohomologous. Now, they are cohomologous if for each index α,
there are continuous maps tα : UαG such that for every x ∈ Uαβ and every pair of
indices (α, β) we have the relationship

(1.1.1) g
(2)
αβ (x)tβ(x) = tα(x)g

(1)
αβ (x).

Now we have various automorphism of principal G-bundles, namely

t̃α : GUα
−→∼ GUα

,

and for i = 1, 2

g̃
(i)
αβ : Gαβ −→∼ Gαβ .
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The condition (1.1.1) can be re-written as the commutativity of

(1.1.2) Gαβ
g̃
(1)
αβ˜ //

t̃β

˜

��

Gαβ

t̃α˜

��
Gαβ ˜̃

g
(2)
αβ

// Gαβ

Let X ′ =
∐
α Uα and set t̃ =

∐
α t̃α. We have an automorphism of trivial

principal G-bundles

t̃ : GX′ −→∼ GX′ .

Each of the 1-cocycles (g
(i)
αβ) gives rise to a well-known “glueng” equivalence relation

∼i on X ′. Diagram (1.1.2) says that x′1 ∼1 x
′
2 if and only if t̃(x′1) ∼2 t̃(x

′
2). Thus

the resulting quotients X ′/ ∼1 and X ′/ ∼2 are isomorphic principal G-bundles on
X, something we’ve seen earlier.

If we write X ′′ = X ′ ×X X ′ and pi : X
′′ → X, i = 1, 2 for the two projections,

then the cocylcle (g̃
(i)
αβ) gives rise to an automorphism g̃(i) : GX′′ −→∼ GX′′ , for

i = 1, 2. The commutativity of Diagram (1.1.2) is equivalent to the commutativity
of

(1.1.3) GX′′
g̃(1)˜ //

p∗2(t̃)

˜

��

GX′′

p∗1(t̃)˜

��
GX′′ ˜̃

g(2)
// GX′′

This is exactly analogous to an isomorphism of (equivariant) descent data, namely
the descent data given by the two co-cycles under discussion.

1.2. The case of schemes. Now consider our standard situation of a smooth
relatively affine group scheme G→ S. If U ∈ Sch/S and g ∈ G(U) then we have a
an automorphism of trivial G-torsors

g̃ : GU → GU

given by (u, g∗) 7→ (u g(u)g∗), where u is a T -valued point of U and g∗ a T -valued
point of G.

Conversely any automorphism of the G-torsor GT must be of the form g̃ for a
unique g ∈ G(T ), as in the topological situation (the proof is exactly analogous to
the proof in that situation).

Let p : X ′ → X be an fpqc-map in Sch/S . By what we have just seen, an automor-
phism of X ′′-schemes ψ : GX′′ → GX′′ is G-equivariant (i.e., it is an automorphism
of trivial G-torsors) if and only if

ψ = g̃

for a unique element g ∈ G(X ′′). Moreover, ψ is a descent datum if and only if
for every valued point (x′1, x

′
2, x
′
3) of X ′′′, the co-cycle rule g(x′1, x

′
2)g(x′2, x

′
3) =

g(x′1, x
′
3) holds. In other words g is a 1-cocycle or a transition element and gives

rise to a G-torsor on X.
Now suppose we have two 1-cocycles for the fpqc-cover p : X ′ → X, say g(1)

and g(2). Thus g̃(i), i = 1, 2, are descent data. An isomorphism between between
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these two descent data is an automorphism of X ′-schemes ϕ : GX′ → GX′ such
that p∗1(ϕ)g̃(1) = g̃(2)p∗2(ϕ). If E1 and E2 are the two torsors given by g̃(1) and
g̃(2), then ϕ gives rise to an isomorphism of X-schemes (not necessarily of G-
torsors) ϕ̄ : E1 −→∼ E2. For ϕ̄ to be an isomorphism of G-torsors it is necessary and

sufficient that ϕ = t̃ for some t ∈ G(X ′), for then and only then is ϕ a G-equivariant
isomorphism (i.e., an automorphism of the G-torsor GX′ . The conclusion is that
g(i) : X ′′ → G, i = 1, 2, give rise to isomorphic G-torsors if and only if there exists
t ∈ G(X ′) such that the diagram below commutes (compare with (1.1.3)):

GX′′
g̃(1)˜ //

p∗2(t̃)

˜

��

GX′′

p∗1(t̃)˜

��
GX′′ ˜̃

g(2)
// GX′′

and this happens if and only if there exists t ∈ G(X ′) such that for a valued point
(x′1, x

′
2) : W → X ′′ of X ′′, the following equation is satisfied:

(1.2.1) t(x′1)g(1)(x′1, x
′
2) = g(2)(x′1, x

′
2)t(x′2).

1.3. The set H1(X, GX). The above considerations lead us to put an equivalence
relation on the set of 1-cocycles in G(X ′′), i.e., namely the relation g(1) ∼ g(2) if
there exists t ∈ G(X ′) such that (1.2.1) is satisfied for all valued points (x′1, x

′
2, x
′
3)

of X ′′′. The resulting set of equivalence classes is denoted Ȟ1(X ′, GX). In other
words:

Ȟ1(X ′, GX) = {g ∈ G(X ′′) | g(p12)g(p23) = g(p13)}/ ∼ .

From our discussion above, the elements of Ȟ1(X ′, GX) are in one-to-one corre-
spondence with isomorphism classes of G-torsors on X which are trivialised over
X ′. For a fixed locally quasi-affine G- space F , elements of Ȟ1(X ′, GX) are also in
one-to-one correspondence with isomorphism classes of (G,F )-spaces over X (under
(G,F )-morphisms), which are trivialised over X ′.

If u : T → X ′ is an fpqc map, then clearly we have a map u∗ : Ȟ1(X ′, GX) →
Ȟ1(T, GX), induced by g 7→ g(u × u), where u × u : T ×X T → X ′′ is the obvious
map induced by u.

If one could take the direct limit of the sets Ȟ1(X ′, GX) as X ′ runs through
fpqc covers of X, then the direct limit set would (obviously) be in bijective corre-
spondence with isomorphism classes of G-torsors over X. Here is where we run into
a logical difficulty, for the class of fpqc-maps are much too large and direct limits
will not exist unless a universe is fixed (so that the class of fpqc-maps X ′ → X can
essentially be regarded as a set). Fixing a universe in this case is not very helpful
because the direct limit is depends on the universe used. However the class of étale
surjective maps X ′ → X is essentially small (as is the class of fppf maps to X), and
one can take direct limits over these. The resulting direct limit will be in bijective
correspondence with isomorphism classes of G-torsors over X. This direct limit is
denoted H1(X, GX) (note the absence of a “check” over H1). The direct limit could
also have been taken over fppf maps to get the same limiting set.

The set H1(X, GX) is called the first cohomology set with coefficients in the sheaf
GX . Here GX is regarded as a sheaf over X for the étale-topology. It can also be
regarded as a sheaf for the fppf-topology.
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Springer, New York (1971).
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