LECTURE 18

1. $E(F)$ as a quotient by an equivalence relation

We now give the proof of the statement made in Lectures 16 and 17 regarding $E(F)$ as a quotient of a trivial fibre space by an fpqc-equivalence relation.
1.1. Cartesian cubes. Suppose $\pi: E \rightarrow X$ is a G-torsor, and $p: X^{\prime} \rightarrow X$ is an fpqc-map such that there is a trivialization $\theta: G_{X^{\prime}} \xrightarrow{\sim} E_{X^{\prime}}$. For simplicity, write $E^{\prime}=E_{X^{\prime}}, E^{\prime \prime}=E_{X^{\prime \prime}}$ and let $\pi^{\prime}: E^{\prime} \rightarrow X^{\prime}$ and $\pi^{\prime \prime}: E^{\prime \prime} \rightarrow X^{\prime \prime}$ the natural maps induced by π. We have a cartesian cube, with the maps q, q_{1}, and q_{2} the obvious base changes of p, p_{1}, and p_{2} respectively.

Note that the diagram summarizes a lot of data, including the identities $E^{\prime}=p^{*} E$ and $E^{\prime \prime}=p_{1}^{*} E^{\prime}=p_{2}^{*} E^{\prime}$.

If $F \rightarrow S$ is a locally quasi-affine G-space over S we then have a commutative cartesian cube, analogous to-and arising from-diagram (1.1.1), namely

with q^{F} and q_{i}^{F} being the natural projections.

[^0]Let us re-write the top face, namely the cartesian square:

It is evident that if $\xi_{1}=\left(x_{1}^{\prime}, w_{1}\right)$ and $\xi_{2}=\left(x_{2}^{\prime}, w_{2}\right)$ are T-valued points of $X^{\prime} \times_{X} E(F)=E^{\prime}(F)$, then a necessary and sufficient condition for $\left(\xi_{1}, \xi_{2}\right)$ to be a T-valued point of $X^{\prime \prime} \times_{X} E(F)=E^{\prime \prime}(F)$ is: $p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right)$ and $w_{1}=w_{2}$. Thus if we regard cartesian squares with fppf-arrows as effective equivalence relations, then the induced equivalence relation \mathfrak{R} on $E^{\prime}(F)$ is $\left(x_{1}^{\prime}, w_{1}\right) \mathfrak{R}\left(x_{2}^{\prime}, w_{2}\right)$ if and only if $p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right)$ and $w_{1}=w_{2}$.

Now let $\theta_{F}: F_{X^{\prime}} \xrightarrow{\sim} E^{\prime}(F)$ be the trivialization of the F-fibre bundle induced by θ so that the automorphism ψ_{12} of the $X^{\prime \prime}$-scheme $F_{X^{\prime \prime}}$ given by

$$
\psi_{12}:=p_{1}^{*}\left(\theta_{F}\right)^{-1} \circ p_{2}^{*}\left(\theta_{F}\right)
$$

is the one characterised by

$$
\left(x^{\prime \prime}, f\right) \mapsto\left(x^{\prime \prime}, g_{\theta}\left(x^{\prime \prime}\right) f\right)
$$

for T-valued point $x^{\prime \prime}$ and f of $X^{\prime \prime}$ and F respectively. Here $g_{\theta}: X^{\prime \prime} \rightarrow G$ the transition function determined by θ. As in Lecture 17, for $i=1,2$ let $r_{i}=\theta_{F}^{-1} \circ q_{i}^{F}$. We then have a cartesian square

This is equivalent to regarding $E(F)$ as the quotient of $F_{X^{\prime}}$ by an equivalence relation, namely the equivalence relation induced by the equivalence relation \mathfrak{R} on $E^{\prime}(F)$ and the isomorphism $\theta_{F}: F_{X^{\prime}} \xrightarrow{\sim} E^{\prime}(F)$. Let this equivalence be denoted \sim_{θ}. Then $\left(x_{1}^{\prime}, f_{1}\right) \sim_{\theta}\left(x_{2}^{\prime}, f_{2}\right)$ if and only if $\xi_{1} \mathfrak{R} \xi_{2}$, where $\xi_{i}=\theta_{F}\left(x_{i}^{\prime}, f_{i}\right)$. Note that this happens if and only if we have an valued point w of $E(F)$ such that $\theta_{F}\left(x_{i}^{\prime}, f_{i}\right)=\left(x_{i}^{\prime}, w\right)$ for $i=1,2$ and $p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right)$. Consider the valued point $\xi^{*}=\left(x_{1}^{\prime}, x_{2}^{\prime}, w\right)$ of $E^{\prime \prime}(F)$. Clearly $p_{i}^{*}\left(x_{1}^{\prime}, x_{2}^{\prime}, f_{i}\right)=\xi^{*}$ for $i=1,2$. Thus $\left(x_{1}^{\prime}, f_{1}\right) \sim_{\theta}$ $\left(x_{2}^{\prime}, f_{2}\right)$ if and only if $p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, f_{1}\right)=\psi_{12}\left(x_{1}^{\prime}, x_{2}^{\prime}, f_{2}\right)$. We have thus shown that

$$
\left(x_{1}^{\prime}, f_{1}\right) \sim_{\theta}\left(x_{2}^{\prime}, f_{2}\right) \Longleftrightarrow p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right) \text { and } f_{1}=g_{\theta}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2}
$$

From earlier argument, this also means that $E(F)=E \times_{S} F / \sim$ where $(e, f) \sim$ $\left(e g, g^{-1} f\right)$ for $e \in E(T), f \in F(T)$ and $g \in G(T)$, and $T \in \mathbb{S c h}_{/ S}$.

The following commutative diagram may help with book-keeping (where, for $i=1,2$, we write $\theta^{(i)}=p_{i}^{*}(\theta)$.

We have proved:
Theorem 1.1.3. Let $\pi: E \rightarrow X$ be a G-torsor and $F \rightarrow S$ a locally quasi-affine G-space.
(a) Let $\left(X^{\prime} \xrightarrow{p}, \theta\right)$ be a trivialization of E and \sim_{θ} the equivalence relation on $F_{X^{\prime}}$ given by

$$
\left(x_{1}^{\prime}, f_{1}\right) \sim_{\theta}\left(x_{2}^{\prime}, f_{2}\right) \Longleftrightarrow p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right) \text { and } f_{1}=g_{\theta}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2}
$$

Then

$$
E(F)=F_{X^{\prime}} / \sim_{\theta}
$$

(b) If \sim is the equivalence relation on $E \times_{S} F$ given by $(e, f) \sim\left(e g, g^{-1} f\right)$ for $e \in E(T), f \in F(T)$ and $g \in G(T)$, and $T \in \mathbb{S} c h_{/ S}$, then

$$
E(F)=E \times_{S} F / \sim
$$

2. Reductions revisited

Let us return to the situation of Hausdorff topological spaces, with G a topological group and H a closed subgroup.

Let $\pi: E \rightarrow X$ be a principal G-bundle. We saw last time that (isomorphism classes of) reductions of structure group of E to H are in bijective correspondence with principal H-sub-bundles of E. Indeed, if $P \hookrightarrow E$ is such a principal H-subbundle and $p=\left.\pi\right|_{P}: P \rightarrow X$, then the associated fibre bundle $P(G)$ with fibre G consists of equivalence classes of pairs $(a, g) \in P \times G$ with $(a, g) \sim\left(a h, h^{-1}, g\right)$ for $h \in H$. If $[a, g]$ is the equivalence class of (a, g), then the map $[a, g] \mapsto a g$ is a well defined continuous map $\varphi: P(G) \rightarrow E$ lying over X. Conversely, given $e \in E$, the intersection $P \cap \pi^{-1}(\pi(e))$ is non-empty, and hence we can pick $a \in P \cap \pi^{-1}(\pi(e))$. There is a unique $g \in G$ such that $a g=e$. The point $\psi(e):=[a, g]$ does not depend on the choice of $a \in P \cap \pi^{-1}(\pi(e))$ and we have a well-defined continuous map $\psi: E \rightarrow P(G)$ given by $e \mapsto \psi(e)$. The maps φ and ψ are inverses.

So suppose P is as above. We have a commutative diagram

Let us write $P_{x}=p^{-1}(x)$ and $E_{x}=\pi^{-1}(x)$ for $x \in X$. Identifying E_{x} with G (this is tantamount to picking a point $\left.e \in E_{x}\right), P_{x}$ identifies as a coset of H. Thus if
$a \in P_{x}$, then $P_{x}:=P_{x}=a H$. It follows that the image $\varpi\left(P_{x}\right) \subset E / H$ of P_{x} in E / H is a single point, say $\sigma_{P}(x)$. As x varies in X, the fibres P_{x} vary in a continuous fashion, whence so do the point $\sigma_{P}(x)$. The assignment $x \mapsto \sigma_{P}(x)$ is therefore a continuous section of $t: E / H \rightarrow X$. Conversely, given a section σ of $t: E / H \rightarrow X$, as x varies in X, we have subspaces $P_{x}=\varpi^{-1}(\sigma(x))$ of G_{x} varying continuously with x. It is not hard to see that the (disjoint) union $P=\cup_{x} P_{x}$ principal H-subbundle of E. This gives us another way of thinking about the continuous sections of t arising from reductions of structure groups.
2.1. Sections of $E(F)$ and equivariant maps. Let X be a topological space and F a G-space. Let $\pi: E \rightarrow X$ be a principal G-bundle. Recall that one description of the fibre bundle $E(F)$ is as the quotient $(E \times F) / G$ where the action of G on $E \times F$ is the right action given by $(e, f) \cdot g=\left(e g, g^{-1} f\right)$. Note that we have a natural map $\pi_{F}: E(F) \rightarrow X$. Suppose $\sigma: X \rightarrow E(F)$ is a section of π_{F}. Let $e \in E$ and let $x=\pi(e)$. The element $\sigma(x)] \operatorname{in} E(F)$ must be of the form $\left[e^{*}, f^{*}\right]$ for some $e^{*} \in E$ with $\pi\left(e^{*}\right)=x$ and some $f^{*} \in F$. Since $\pi(e)=x=\pi\left(e^{*}\right)$, there is a unique $g \in G$ such that $e^{*}=e g$, whence $\left[e^{*}, f^{*}\right]=[e, g f]^{*}$. Setting $f=f^{*}$ we see that we may always write $\sigma(\pi(e))$ in the form $[e, f]$ for a suitable $f \in F$. Moreover this element $f \in F$ is unique. Indeed if $[e, f]=\left[e, f_{1}\right]$, then $(e, f)=\left(e g, g^{-1} f_{1}\right)$ for a suitable $g \in G$. This means $e=e g$, which in turn means $g=1$, for G acts freely on E. Thus $f=f_{1}$. Thus $f \in F$ completely determined by $e \in E$ and the section σ as the unique element such that $\sigma(\pi(e))=[e, f]$. This unique f may therefore be written as $f=\varphi_{\sigma}(e)$. The assignment $e \mapsto \varphi_{\sigma}(e)$ gives a map

$$
\varphi_{\sigma}: E \rightarrow F
$$

and it is characterized by the formula $\sigma \circ \pi(e)=\left[e, \varphi_{\sigma}(e)\right]$ for $e \in E$. Now

$$
\left[e g, g^{-1} \varphi_{\sigma}(e)\right]=\left[e, \varphi_{\sigma}(e)\right] \quad(e \in E, g \in G)
$$

whence,

$$
\varphi_{\sigma}(e g)=g^{-1} \varphi_{\sigma}(e) \quad(e \in E, g \in G)
$$

This means $\varphi_{\sigma}: E \rightarrow F$ is G-equivariant for the right G-action on F.
Conversely, if $\varphi: E \rightarrow F$ is G-equivariant, i.e., $\varphi(e g)=g^{-1} \varphi(e)$ for $e \in E$ and $g \in G$, then the element $[e, \varphi(e)]$ depends only on the image $x=\pi(e)$ and not on e. Indeed, if $e^{\prime} \in E$ is another point on the fibre of π over x, then $e^{\prime}=e g$ for a unique $g \in G$, and $\varphi\left(e^{\prime}\right)=\varphi(e g)=g^{-1} \varphi(e)$. Thus $\left[e^{\prime}, \varphi\left(e^{\prime}\right)\right]=\left[e g, g^{-1} \varphi(e)\right]=[e, \varphi(e)]$. Thus the map $E \rightarrow E(F)$ given by $e \mapsto[e, \varphi(e)]$ factors through X, and we get a map

$$
\sigma_{\varphi}: X \rightarrow E(F)
$$

given by

$$
x \mapsto[e, \varphi(e)] \quad(x \in X)
$$

where e is any element of $\pi^{-1}(x)$.
Perhaps the most conceptual way of seeing this correspondence between sections of $\pi_{F}: E(F) \rightarrow X$ and G-equivariant maps $G \rightarrow F$ is as follows. As we noted above, G acts on the right on $E \times F$ by the formula $(e, f) \cdot g=\left(e g, g^{-1} f\right)$ for $(e, f) \in G \times F$ and $g \in G$, and $E(F)=(E \times F) / G$. Further $X=E / G$. Clearly, a G-equivariant section of $E \times F \rightarrow E$ descends to a section of $(E \times F) / G \rightarrow E / G$. Conversely, every section of $(E \times F) / G \rightarrow E / G$ gives rise to a G-equivariant section of $E \times F \rightarrow E$, for $E \times F=E \times_{E / G}((E \times F) / G)$. However, G-equivariant sections
$\tilde{\sigma}: E \rightarrow E \times F$ of $E \times F \rightarrow E$ are exactly the maps $\left(1_{E}, \varphi\right)$ where $\varphi: E \rightarrow F$ is G-equivariant.

Whichever way we look at it, we end up with the following:
Lemma 2.1.1. There is a bijective correspondence between the sections of $E(F)$ over X and G-equivariant maps $E \rightarrow F$ for the right actions of G on E and F.

Remarks 2.1.2. (1) If $\varphi: E \rightarrow G / H$ is G-equivariant (therefore giving rise to a unique section of $E / H \rightarrow X$, then the corresponding H-sub-bundle P of $\pi: E \rightarrow X$ can be obtained directly by setting $P=\varphi^{-1}\left(\xi_{0}\right)$ where ξ_{0} is the distinguished point of G / H, namely the image of the identity element $\varepsilon \in G$ under the natural map $G \rightarrow G / H$. Since φ is G-equivariant, and since ξ_{0} is H-invariant, clearly P is H-stable. It is not hard to see that $P \rightarrow X$ is in fact a principal H bundle and the inclusion of P into E is H-equivariant.
(2) If X is a differential manifold and $E^{T} \rightarrow X$ the principal $G L_{n}(\mathbf{R})$-bundle associated to the tangent bundle $T_{X} \rightarrow X$, then a Riemannian structure on X can be re-interpreted as a reduction of structure group of E^{T} to $S O_{n}(\mathbf{R})$. In particular, Riemannian structures on X are in bijective correspondence with sections $\sigma: X \rightarrow E^{T} / S O_{n}(\mathbf{R})$ of the fibre bundle $E^{T} / S O_{n}(\mathbf{R}) \rightarrow X$.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ $(1956 / 57), 182(1958 / 59), 190(1959 / 60), 195(1959 / 60), 212(1960 / 61), 221(1960 / 61), 232$ (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGAII] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III $\left.1_{1}\right]$, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA III 2_{2} _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
[EGA IV ${ }_{1}$]_, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGAIV}_{2}\right] \ldots$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
$\left[\mathrm{EGAIV}_{3}\right]$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
[EGA IV 4]_, Élements de géométrie algébrique $I V$. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: October 17, 2012.

