
LECTURE 18

1. E(F ) as a quotient by an equivalence relation

We now give the proof of the statement made in Lectures 16 and 17 regarding
E(F ) as a quotient of a trivial fibre space by an fpqc-equivalence relation.

1.1. Cartesian cubes. Suppose π : E → X is a G-torsor, and p : X ′ → X is an
fpqc-map such that there is a trivialization θ : GX′ −→∼ EX′ . For simplicity, write
E′ = EX′ , E′′ = EX′′ and let π′ : E′ → X ′ and π′′ : E′′ → X ′′ the natural maps
induced by π. We have a cartesian cube, with the maps q, q1, and q2 the obvious
base changes of p, p1, and p2 respectively.

(1.1.1) E′

π′

��

q // E

π

��

E′′

q2

=={{{{{{{{ q1 //

π′′

��

E′

q

>>}}}}}}}}

π′

��

X ′
p // X

X ′′

p
2

=={{{{{{{{ p
1 // X ′

p

>>}}}}}}}}

Note that the diagram summarizes a lot of data, including the identities E′ = p∗E
and E′′ = p∗

1
E′ = p∗

2
E′.

If F → S is a locally quasi-affine G-space over S we then have a commutative
cartesian cube, analogous to—and arising from—diagram (1.1.1), namely

(1.1.2) E′(F )

π′
F

��

qF // E(F )

πF

��

E′′(F )

qF
2

::uuuuuuuuu qF
1 //

π′′
F

��

E′(F )

qF
;;vvvvvvvvv

π′
F

��

X ′
p // X

X ′′

p
2

99tttttttttt p
1 // X ′

p

::uuuuuuuuuu

with qF and qFi being the natural projections.
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Let us re-write the top face, namely the cartesian square:

E′′(F )

�

qF2 //

qF1
��

E′(F )

qF

��
E′(F )

qF
// E(F )

It is evident that if ξ1 = (x′1, w1) and ξ2 = (x′2, w2) are T -valued points of
X ′ ×X E(F ) = E′(F ), then a necessary and sufficient condition for (ξ1, ξ2) to be
a T -valued point of X ′′ ×X E(F ) = E′′(F ) is: p(x′1) = p(x′2) and w1 = w2. Thus
if we regard cartesian squares with fppf-arrows as effective equivalence relations,
then the induced equivalence relation R on E′(F ) is (x′1, w1)R(x′2, w2) if and only
if p(x′1) = p(x′2) and w1 = w2.

Now let θF : FX′ −→∼ E′(F ) be the trivialization of the F -fibre bundle induced
by θ so that the automorphism ψ12 of the X ′′-scheme FX′′ given by

ψ12 := p∗1(θF )−1 ◦p∗2(θF )

is the one characterised by

(x′′, f) 7→ (x′′, gθ(x
′′)f)

for T -valued point x′′ and f of X ′′ and F respectively. Here gθ : X ′′ → G the
transition function determined by θ. As in Lecture 17, for i = 1, 2 let ri = θ−1F ◦ qFi .
We then have a cartesian square

E′′(F )

�

r2 //

r
1

��

FX′

s

��
FX′

s
// E(F )

This is equivalent to regarding E(F ) as the quotient of FX′ by an equivalence
relation, namely the equivalence relation induced by the equivalence relation R on
E′(F ) and the isomorphism θF : FX′ −→∼ E′(F ). Let this equivalence be denoted
∼θ. Then (x′1, f1) ∼θ (x′2, f2) if and only if ξ1R ξ2, where ξi = θF (x′i, fi). Note
that this happens if and only if we have an valued point w of E(F ) such that
θF (x′i, fi) = (x′i, w) for i = 1, 2 and p(x′1) = p(x′2). Consider the valued point
ξ∗ = (x′1, x

′
2, w) of E′′(F ). Clearly p∗i (x

′
1, x
′
2, fi) = ξ∗ for i = 1, 2. Thus (x′1, f1) ∼θ

(x′2, f2) if and only if p(x′1) = p(x′2) and (x′1, x
′
2, f1) = ψ12(x′1, x

′
2, f2). We have

thus shown that

(x′1, f1) ∼θ (x′2, f2)⇐⇒ p(x′1) = p(x′2) and f1 = gθ(x
′
1, x

′
2)f2

From earlier argument, this also means that E(F ) = E ×S F/ ∼ where (e, f) ∼
(eg, g−1f) for e ∈ E(T ), f ∈ F (T ) and g ∈ G(T ), and T ∈ Sch/S .
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The following commutative diagram may help with book-keeping (where, for
i = 1, 2, we write θ(i) = p∗i (θ).

FX′′

θ(2) o
��

//
ψ12

��

FX′

o θF
��

s

||

FX′′ ˜θ(1) //
��

E′′(F )
qF2

//

qF1
��

r2

::uuuuuuuuu

r1

{{www
ww
ww
ww

�

E′(F )

qF

��
FX′

θF̃

//

s

>>
E′(F )

qF
// E(F )

We have proved:

Theorem 1.1.3. Let π : E → X be a G-torsor and F → S a locally quasi-affine
G-space.

(a) Let (X ′
p−→, θ) be a trivialization of E and ∼θ the equivalence relation on

FX′ given by

(x′1, f1) ∼θ (x′2, f2)⇐⇒ p(x′1) = p(x′2) and f1 = gθ(x
′
1, x

′
2)f2.

Then
E(F ) = FX′/ ∼θ .

(b) If ∼ is the equivalence relation on E ×S F given by (e, f) ∼ (eg, g−1f) for
e ∈ E(T ), f ∈ F (T ) and g ∈ G(T ), and T ∈ Sch/S, then

E(F ) = E ×S F/ ∼ .

2. Reductions revisited

Let us return to the situation of Hausdorff topological spaces, with G a topolog-
ical group and H a closed subgroup.

Let π : E → X be a principal G-bundle. We saw last time that (isomorphism
classes of) reductions of structure group of E to H are in bijective correspondence
with principal H-sub-bundles of E. Indeed, if P ↪→ E is such a principal H-sub-
bundle and p = π|P : P → X, then the associated fibre bundle P (G) with fibre G
consists of equivalence classes of pairs (a, g) ∈ P ×G with (a, g) ∼ (ah, h−1, g) for
h ∈ H. If [a, g] is the equivalence class of (a, g), then the map [a, g] 7→ ag is a well
defined continuous map ϕ : P (G) → E lying over X. Conversely, given e ∈ E, the
intersection P ∩π−1(π(e)) is non-empty, and hence we can pick a ∈ P ∩π−1(π(e)).
There is a unique g ∈ G such that ag = e. The point ψ(e) := [a, g] does not depend
on the choice of a ∈ P ∩ π−1(π(e)) and we have a well-defined continuous map
ψ : E → P (G) given by e 7→ ψ(e). The maps ϕ and ψ are inverses.

So suppose P is as above. We have a commutative diagram

P
� � //

p
��@

@@
@@

@@
@ E

$ //

π

��

E/H

t
||zz
zz
zz
zz

X

Let us write Px = p−1(x) and Ex = π−1(x) for x ∈ X. Identifying Ex with G (this
is tantamount to picking a point e ∈ Ex), Px identifies as a coset of H. Thus if
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a ∈ Px, then Px := Px = aH. It follows that the image $(Px) ⊂ E/H of Px in E/H
is a single point, say σP (x). As x varies in X, the fibres Px vary in a continuous
fashion, whence so do the point σP (x). The assignment x 7→ σP (x) is therefore a
continuous section of t : E/H → X. Conversely, given a section σ of t : E/H → X,
as x varies in X, we have subspaces Px = $−1(σ(x)) of Gx varying continuously
with x. It is not hard to see that the (disjoint) union P = ∪xPx principal H-sub-
bundle of E. This gives us another way of thinking about the continuous sections
of t arising from reductions of structure groups.

2.1. Sections of E(F ) and equivariant maps. Let X be a topological space and
F a G-space. Let π : E → X be a principal G-bundle. Recall that one description
of the fibre bundle E(F ) is as the quotient (E × F )/G where the action of G on
E × F is the right action given by (e, f) · g = (eg, g−1f). Note that we have a
natural map πF : E(F )→ X. Suppose σ : X → E(F ) is a section of πF . Let e ∈ E
and let x = π(e). The element σ(x)]inE(F ) must be of the form [e∗, f∗] for some
e∗ ∈ E with π(e∗) = x and some f∗ ∈ F . Since π(e) = x = π(e∗), there is a unique
g ∈ G such that e∗ = eg, whence [e∗, f∗] = [e, gf ]∗. Setting f = f∗ we see that
we may always write σ(π(e)) in the form [e, f ] for a suitable f ∈ F . Moreover this
element f ∈ F is unique. Indeed if [e, f ] = [e, f1], then (e, f) = (eg, g−1f1) for a
suitable g ∈ G. This means e = eg, which in turn means g = 1, for G acts freely on
E. Thus f = f1. Thus f ∈ F completely determined by e ∈ E and the section σ
as the unique element such that σ(π(e)) = [e, f ]. This unique f may therefore be
written as f = ϕσ(e). The assignment e 7→ ϕσ(e) gives a map

ϕσ : E → F

and it is characterized by the formula σ ◦π(e) = [e, ϕσ(e)] for e ∈ E. Now

[eg, g−1ϕσ(e)] = [e, ϕσ(e)] (e ∈ E, g ∈ G)

whence,

ϕσ(eg) = g−1ϕσ(e) (e ∈ E, g ∈ G).

This means ϕσ : E → F is G-equivariant for the right G-action on F .
Conversely, if ϕ : E → F is G-equivariant, i.e., ϕ(eg) = g−1ϕ(e) for e ∈ E and

g ∈ G, then the element [e, ϕ(e)] depends only on the image x = π(e) and not on e.
Indeed, if e′ ∈ E is another point on the fibre of π over x, then e′ = eg for a unique
g ∈ G, and ϕ(e′) = ϕ(eg) = g−1ϕ(e). Thus [e′, ϕ(e′)] = [eg, g−1ϕ(e)] = [e, ϕ(e)].
Thus the map E → E(F ) given by e 7→ [e, ϕ(e)] factors through X, and we get a
map

σϕ : X → E(F )

given by

x 7→ [e, ϕ(e)] (x ∈ X)

where e is any element of π−1(x).
Perhaps the most conceptual way of seeing this correspondence between sections

of πF : E(F ) → X and G-equivariant maps G → F is as follows. As we noted
above, G acts on the right on E × F by the formula (e, f) · g = (eg, g−1f) for
(e, f) ∈ G× F and g ∈ G, and E(F ) = (E × F )/G. Further X = E/G. Clearly, a
G-equivariant section of E × F → E descends to a section of (E × F )/G → E/G.
Conversely, every section of (E×F )/G→ E/G gives rise to a G-equivariant section
of E×F → E, for E×F = E×E/G ((E×F )/G). However, G-equivariant sections
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σ̃ : E → E × F of E × F → E are exactly the maps (1E , ϕ) where ϕ : E → F is
G-equivariant.

E × F

xxqqq
qqq

qqq
qq

��

E

σ̃
22

π

��

(E × F )/G

yysss
sss

sss
s

E/G E(F )

πF

yyrrr
rrr

rrr
rr

X
σ

EE

Whichever way we look at it, we end up with the following:

Lemma 2.1.1. There is a bijective correspondence between the sections of E(F )
over X and G-equivariant maps E → F for the right actions of G on E and F .

Remarks 2.1.2. (1) If ϕ : E → G/H is G-equivariant (therefore giving rise
to a unique section of E/H → X, then the corresponding H-sub-bundle P
of π : E → X can be obtained directly by setting P = ϕ−1(ξ0) where ξ0 is
the distinguished point of G/H, namely the image of the identity element
ε ∈ G under the natural map G → G/H. Since ϕ is G-equivariant, and
since ξ0 is H-invariant, clearly P is H-stable. It is not hard to see that
P → X is in fact a principal H bundle and the inclusion of P into E is
H-equivariant.

(2) If X is a differential manifold and ET → X the principal GLn(R)-bundle
associated to the tangent bundle TX → X, then a Riemannian structure on
X can be re-interpreted as a reduction of structure group of ET to SOn(R).
In particular, Riemannian structures on X are in bijective correspondence
with sections σ : X → ET /SOn(R) of the fibre bundle ET /SOn(R)→ X.

References
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