LECTURE 18

1. E(F) as a quotient by an equivalence relation

We now give the proof of the statement made in Lectures 16 and 17 regarding
E(F) as a quotient of a trivial fibre space by an fpqc-equivalence relation.

1.1. Cartesian cubes. Suppose m: E — X is a G-torsor, and p: X’ — X is an
fpgc-map such that there is a trivialization 6: Gx+ = FEx-. For simplicity, write
E' = Ex/, B = Ex» and let n': B/ — X' and n”: £ — X" the natural maps
induced by m. We have a cartesian cube, with the maps ¢, ¢1, and g2 the obvious
base changes of p, p1, and p, respectively.

(1.1.1) E 1

E/I E/ P
" X —|—2sX

" Py /
X — s X

Note that the diagram summarizes a lot of data, including the identities E' = p*FE
and B" = p*E' = pE'.

If F — S is a locally quasi-affine G-space over S we then have a commutative
cartesian cube, analogous to—and arising from—diagram (1.1.1), namely

/

E'(F)
e

F

(1.1.2) E/'(F) 1

ar
i,

E// F)
Py /

with ¢f" and ¢ being the natural projections.

//
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Let us re-write the top face, namely the cartesian square:

E"(F) 2~ B'(F)

lF

It is evident that if & = (2}, w1) and & = (a},ws) are T-valued points of
X' xx E(F) = E'(F), then a necessary and sufficient condition for (&1, &2) to be
a T-valued point of X" xx E(F) = E"(F) is: p(z}) = p(z}) and w; = wy. Thus
if we regard cartesian squares with fppf-arrows as effective equivalence relations,
then the induced equivalence relation St on E'(F) is (z], w1)R(zh, we) if and only
if p(a)) = p(zh) and wy = ws.

Now let 0p: Fx: == E'(F) be the trivialization of the F-fibre bundle induced
by 6 so that the automorphism 2 of the X”-scheme Fx given by

2

$1o:= pi(0r) " op3(0F)
is the one characterised by
(1'//7 f) — (1,//’ gg(xll)f)

for T-valued point z” and f of X" and F respectively. Here gg: X" — G the
transition function determined by 0. As in Lecture 17, for i = 1,2 let r; = 9;1 oql.
We then have a cartesian square

T2

E"(F) —— Fx/

This is equivalent to regarding E(F) as the quotient of Fx/ by an equivalence
relation, namely the equivalence relation induced by the equivalence relation R on
E'(F) and the isomorphism 0p: Fx, == E’'(F). Let this equivalence be denoted
~p. Then (2, f1) ~¢ (25, f2) if and only if &R &, where & = 0p (2}, fi). Note
that this happens if and only if we have an valued point w of E(F') such that
Or(z}, fi) = (2}, w) for i = 1,2 and p(x}) = p(ah). Consider the valued point
& = (af, x4, w) of E"(F). Clearly p}(z,zh, f;) = & for i = 1,2. Thus (x}, f1) ~e
(x4, f2) if and only if p(x}) = p(ab) and (2], x4, f1) = Y12(2], 5, f2). We have
thus shown that

(1, f1) ~o (4, f2) <= p(a)) = p(xy) and f1 = go(z], 25) f2

From earlier argument, this also means that E(F) = E xg F/ ~ where (e, f) ~
(eg, g7'f) for e € E(T), f € F(T) and g € G(T), and T € Schyg.
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The following commutative diagram may help with book-keeping (where, for
i = 1,2, we write §) = p*(6).
Fxn — Fx
9<2>lz / zlep\
Fyn —20 pr(p ,

R

Fyxr —= E,(F

U

Theorem 1.1.3. Let m: E — X be a G-torsor and F' — S a locally quasi-affine
G-space.

P12

We have proved:

(a) Let (X' &, 0) be a trivialization of E and ~g the equivalence relation on
Fx: given by

(@1, f1) ~o (25, fo) <= p(a)) = p(ay) and fi = go(@), 75)fa.
Then
E(F) = Fx// ~p .
(b) If ~ is the equivalence relation on E x5 F given by (e, f) ~ (eg, g~ f) for
ec E(T), fe F(T) and g € G(T), and T € Sch;g, then

E(F)=ExgF/~.
2. Reductions revisited

Let us return to the situation of Hausdorff topological spaces, with G a topolog-
ical group and H a closed subgroup.

Let 7: E — X be a principal G-bundle. We saw last time that (isomorphism
classes of) reductions of structure group of E to H are in bijective correspondence
with principal H-sub-bundles of E. Indeed, if P — FE is such a principal H-sub-
bundle and p = 7|p: P — X, then the associated fibre bundle P(G) with fibre G
consists of equivalence classes of pairs (a, g) € P x G with (a, g) ~ (ah, h™1,g) for
h € H. If [a, g] is the equivalence class of (a, g), then the map [a, g] — ag is a well
defined continuous map ¢: P(G) — E lying over X. Conversely, given e € E, the
intersection P N7~1(7(e)) is non-empty, and hence we can pick a € PN7~t(7w(e)).
There is a unique g € G such that ag = e. The point 1 (e):= [a, g] does not depend
on the choice of a € PN w~!(w(e)) and we have a well-defined continuous map
¥: E — P(G) given by e — (e). The maps ¢ and 1 are inverses.

So suppose P is as above. We have a commutative diagram

P>E—"-E/H
NP

Let us write P, = p~!(x) and E, = 7~ (z) for € X. Identifying E, with G (this
is tantamount to picking a point e € E,), P, identifies as a coset of H. Thus if
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a € Py, then P,:= P, = aH. It follows that the image @w(P,) C E/H of P, in E/H
is a single point, say op(z). As z varies in X, the fibres P, vary in a continuous
fashion, whence so do the point op(z). The assignment x — op(x) is therefore a
continuous section of t: E/H — X. Conversely, given a section o of t: E/H — X,
as o varies in X, we have subspaces P, = w~!(o(z)) of G, varying continuously
with 2. It is not hard to see that the (disjoint) union P = U, P, principal H-sub-
bundle of E. This gives us another way of thinking about the continuous sections
of t arising from reductions of structure groups.

2.1. Sections of E(F) and equivariant maps. Let X be a topological space and
F a G-space. Let m: E — X be a principal G-bundle. Recall that one description
of the fibre bundle E(F') is as the quotient (E x F')/G where the action of G on
E x F is the right action given by (e, f)-g = (eg, g~'f). Note that we have a
natural map 7p: E(F) — X. Suppose 0: X — E(F) is a section of 7. Let e € E
and let = w(e). The element o(z)}inE(F) must be of the form [e*, f*] for some
e* € E with m(e*) = x and some f* € F. Since 7(e) = z = w(e*), there is a unique
g € G such that e* = eg, whence [e*, f*] = [e, gf]". Setting f = f* we see that
we may always write o(n(e)) in the form [e, f] for a suitable f € F. Moreover this
element f € F is unique. Indeed if [e, f] = [e, fi], then (e, f) = (eg, g~ f1) for a
suitable g € G. This means e = eg, which in turn means g = 1, for G acts freely on
E. Thus f = f1. Thus f € F completely determined by e € E and the section o
as the unique element such that o(w(e)) = [e, f]. This unique f may therefore be
written as f = @, (e). The assignment e — @, (e) gives a map

o E—F

and it is characterized by the formula oom(e) = [e, ¢, (e)] for e € E. Now

leg, 57 wa(e)] = e, ole)] (e € B,g€G)
whence,
¢oleg) =97 po(e)  (e€E,g€q).

This means p,: E — F is G-equivariant for the right G-action on F.

Conversely, if ¢: E — F is G-equivariant, i.e., p(eg) = g 1¢(e) for e € E and
g € G, then the element [e, (e)] depends only on the image z = 7(e) and not on e.
Indeed, if ¢/ € F is another point on the fibre of 7 over z, then ¢’ = eg for a unique
g € G, and p(e') = p(eg) = g~ p(e). Thus [¢/, p(e')] = [eg, g7 ¢(e)] = [e, (e)].
Thus the map E — E(F) given by e — [e, p(e)] factors through X, and we get a
map

o,: X = E(F)
given by
e, ple)] (v eX)

where e is any element of 7—1(x).

Perhaps the most conceptual way of seeing this correspondence between sections
of mp: E(F) — X and G-equivariant maps G — F' is as follows. As we noted
above, G acts on the right on E x F by the formula (e, f)-g = (eg, g~ f) for
(e, /)€ Gx Fand g € G,and E(F) = (E x F)/G. Further X = E/G. Clearly, a
G-equivariant section of E x F — E descends to a section of (E x F)/G — E/G.
Conversely, every section of (Ex F')/G — E/G gives rise to a G-equivariant section
of ExF — E, for EXF = EXpgq((ExF)/G). However, G-equivariant sections



LECTURE 18 5

0: E— EXF of ExF — E are exactly the maps (1g, @) where ¢: E — F is
G-equivariant.
ExF

>

E

™ (EXF)/G

~

E/G E(F)

/
X ag

Whichever way we look at it, we end up with the following:

Lemma 2.1.1. There is a bijective correspondence between the sections of E(F)
over X and G-equivariant maps E — F for the right actions of G on E and F.

Remarks 2.1.2. (1) If p: E — G/H is G-equivariant (therefore giving rise
to a unique section of E/H — X, then the corresponding H-sub-bundle P
of m: E — X can be obtained directly by setting P = ¢~ 1(&) where & is
the distinguished point of G/H, namely the image of the identity element
¢ € G under the natural map G — G/H. Since ¢ is G-equivariant, and
since &y is H-invariant, clearly P is H-stable. It is not hard to see that
P — X is in fact a principal H bundle and the inclusion of P into E is
H-equivariant.

(2) If X is a differential manifold and ET — X the principal GL,,(R)-bundle
associated to the tangent bundle Tx — X, then a Riemannian structure on
X can be re-interpreted as a reduction of structure group of E to SO,,(R).
In particular, Riemannian structures on X are in bijective correspondence
with sections o: X — ET /SO, (R) of the fibre bundle E7/SO,(R) — X.
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