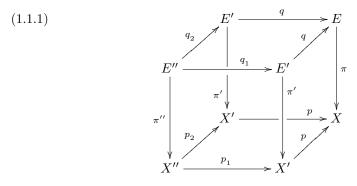
LECTURE 18

1. E(F) as a quotient by an equivalence relation

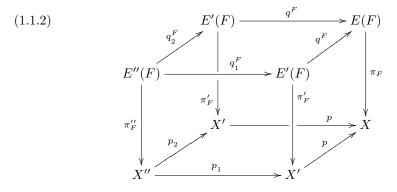
We now give the proof of the statement made in Lectures 16 and 17 regarding E(F) as a quotient of a trivial fibre space by an fpqc-equivalence relation.

1.1. **Cartesian cubes.** Suppose $\pi: E \to X$ is a *G*-torsor, and $p: X' \to X$ is an fpqc-map such that there is a trivialization $\theta: G_{X'} \xrightarrow{\sim} E_{X'}$. For simplicity, write $E' = E_{X'}, E'' = E_{X''}$ and let $\pi': E' \to X'$ and $\pi'': E'' \to X''$ the natural maps induced by π . We have a cartesian cube, with the maps q, q_1 , and q_2 the obvious base changes of p, p_1 , and p_2 respectively.



Note that the diagram summarizes a lot of data, including the identities $E' = p^* E$ and $E'' = p_1^* E' = p_2^* E'$.

If $F \to \hat{S}$ is a locally quasi-affine G-space over S we then have a commutative cartesian cube, analogous to—and arising from—diagram (1.1.1), namely



with q^F and q_i^F being the natural projections.

Date: October 17, 2012.

Let us re-write the top face, namely the cartesian square:

$$\begin{array}{ccc}
E''(F) & \xrightarrow{q_2^F} & E'(F) \\
\begin{array}{ccc}
q_1^F & \Box & & & \\
P & & & & \\
E'(F) & \xrightarrow{q_F} & E(F)
\end{array}$$

It is evident that if $\xi_1 = (x'_1, w_1)$ and $\xi_2 = (x'_2, w_2)$ are *T*-valued points of $X' \times_X E(F) = E'(F)$, then a necessary and sufficient condition for (ξ_1, ξ_2) to be a *T*-valued point of $X'' \times_X E(F) = E''(F)$ is: $p(x'_1) = p(x'_2)$ and $w_1 = w_2$. Thus if we regard cartesian squares with fppf-arrows as effective equivalence relations, then the induced equivalence relation \mathfrak{R} on E'(F) is $(x'_1, w_1)\mathfrak{R}(x'_2, w_2)$ if and only if $p(x'_1) = p(x'_2)$ and $w_1 = w_2$.

Now let $\theta_F \colon F_{X'} \xrightarrow{\sim} E'(F)$ be the trivialization of the *F*-fibre bundle induced by θ so that the automorphism ψ_{12} of the X''-scheme $F_{X''}$ given by

$$\psi_{12} := p_1^*(\theta_F)^{-1} \circ p_2^*(\theta_F)$$

is the one characterised by

$$(x'', f) \mapsto (x'', g_{\theta}(x'')f)$$

for *T*-valued point x'' and f of X'' and F respectively. Here $g_{\theta} \colon X'' \to G$ the transition function determined by θ . As in Lecture 17, for i = 1, 2 let $r_i = \theta_F^{-1} \circ q_i^F$. We then have a cartesian square

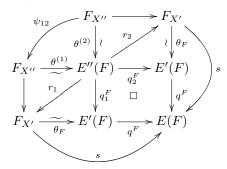
$$\begin{array}{cccc}
E''(F) & \xrightarrow{r_2} & F_{X'} \\
& & & \downarrow s \\
F_{X'} & \xrightarrow{s} & E(F)
\end{array}$$

This is equivalent to regarding E(F) as the quotient of $F_{X'}$ by an equivalence relation, namely the equivalence relation induced by the equivalence relation \mathfrak{R} on E'(F) and the isomorphism $\theta_F \colon F_{X'} \longrightarrow E'(F)$. Let this equivalence be denoted \sim_{θ} . Then $(x'_1, f_1) \sim_{\theta} (x'_2, f_2)$ if and only if $\xi_1 \mathfrak{R} \xi_2$, where $\xi_i = \theta_F(x'_i, f_i)$. Note that this happens if and only if we have an valued point w of E(F) such that $\theta_F(x'_i, f_i) = (x'_i, w)$ for i = 1, 2 and $p(x'_1) = p(x'_2)$. Consider the valued point $\xi^* = (x'_1, x'_2, w)$ of E''(F). Clearly $p_i^*(x'_1, x'_2, f_i) = \xi^*$ for i = 1, 2. Thus $(x'_1, f_1) \sim_{\theta} (x'_2, f_2)$ if and only if $p(x'_1) = p(x'_2)$ and $(x'_1, x'_2, f_1) = \psi_{12}(x'_1, x'_2, f_2)$. We have thus shown that

$$(x'_1, f_1) \sim_{\theta} (x'_2, f_2) \iff p(x'_1) = p(x'_2) \text{ and } f_1 = g_{\theta}(x'_1, x'_2)f_2$$

From earlier argument, this also means that $E(F) = E \times_S F/ \sim$ where $(e, f) \sim (eg, g^{-1}f)$ for $e \in E(T), f \in F(T)$ and $g \in G(T)$, and $T \in Sch_{/S}$.

The following commutative diagram may help with book-keeping (where, for i = 1, 2, we write $\theta^{(i)} = p_i^*(\theta)$.



We have proved:

Theorem 1.1.3. Let $\pi: E \to X$ be a G-torsor and $F \to S$ a locally quasi-affine G-space.

(a) Let $(X' \xrightarrow{p}, \theta)$ be a trivialization of E and \sim_{θ} the equivalence relation on $F_{X'}$ given by

 $(x'_1, f_1) \sim_{\theta} (x'_2, f_2) \iff p(x'_1) = p(x'_2) \text{ and } f_1 = g_{\theta}(x'_1, x'_2)f_2.$ Then

$$E(F) = F_{X'} / \sim_{\theta} .$$

(b) If \sim is the equivalence relation on $E \times_S F$ given by $(e, f) \sim (eg, g^{-1}f)$ for $e \in E(T), f \in F(T)$ and $g \in G(T)$, and $T \in Sch_{/S}$, then

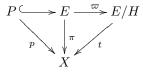
$$E(F) = E \times_S F / \sim$$
.

2. Reductions revisited

Let us return to the situation of Hausdorff topological spaces, with G a topological group and H a closed subgroup.

Let $\pi: E \to X$ be a principal *G*-bundle. We saw last time that (isomorphism classes of) reductions of structure group of *E* to *H* are in bijective correspondence with principal *H*-sub-bundles of *E*. Indeed, if $P \to E$ is such a principal *H*-sub-bundle and $p = \pi|_P \colon P \to X$, then the associated fibre bundle P(G) with fibre *G* consists of equivalence classes of pairs $(a, g) \in P \times G$ with $(a, g) \sim (ah, h^{-1}, g)$ for $h \in H$. If [a, g] is the equivalence class of (a, g), then the map $[a, g] \mapsto ag$ is a well defined continuous map $\varphi \colon P(G) \to E$ lying over *X*. Conversely, given $e \in E$, the intersection $P \cap \pi^{-1}(\pi(e))$ is non-empty, and hence we can pick $a \in P \cap \pi^{-1}(\pi(e))$. There is a unique $g \in G$ such that ag = e. The point $\psi(e) := [a, g]$ does not depend on the choice of $a \in P \cap \pi^{-1}(\pi(e))$ and we have a well-defined continuous map $\psi \colon E \to P(G)$ given by $e \mapsto \psi(e)$. The maps φ and ψ are inverses.

So suppose P is as above. We have a commutative diagram



Let us write $P_x = p^{-1}(x)$ and $E_x = \pi^{-1}(x)$ for $x \in X$. Identifying E_x with G (this is tantamount to picking a point $e \in E_x$), P_x identifies as a coset of H. Thus if

LECTURE 18

 $a \in P_x$, then $P_x := P_x = aH$. It follows that the image $\varpi(P_x) \subset E/H$ of P_x in E/H is a single point, say $\sigma_P(x)$. As x varies in X, the fibres P_x vary in a continuous fashion, whence so do the point $\sigma_P(x)$. The assignment $x \mapsto \sigma_P(x)$ is therefore a continuous section of $t \colon E/H \to X$. Conversely, given a section σ of $t \colon E/H \to X$, as x varies in X, we have subspaces $P_x = \varpi^{-1}(\sigma(x))$ of G_x varying continuously with x. It is not hard to see that the (disjoint) union $P = \bigcup_x P_x$ principal H-subbundle of E. This gives us another way of thinking about the continuous sections of t arising from reductions of structure groups.

2.1. Sections of E(F) and equivariant maps. Let X be a topological space and F a G-space. Let $\pi: E \to X$ be a principal G-bundle. Recall that one description of the fibre bundle E(F) is as the quotient $(E \times F)/G$ where the action of G on $E \times F$ is the right action given by $(e, f) \cdot g = (eg, g^{-1}f)$. Note that we have a natural map $\pi_F: E(F) \to X$. Suppose $\sigma: X \to E(F)$ is a section of π_F . Let $e \in E$ and let $x = \pi(e)$. The element $\sigma(x)$ in E(F) must be of the form $[e^*, f^*]$ for some $e^* \in E$ with $\pi(e^*) = x$ and some $f^* \in F$. Since $\pi(e) = x = \pi(e^*)$, there is a unique $g \in G$ such that $e^* = eg$, whence $[e^*, f^*] = [e, gf]^*$. Setting $f = f^*$ we see that we may always write $\sigma(\pi(e))$ in the form [e, f] for a suitable $f \in F$. Moreover this element $f \in F$ is unique. Indeed if $[e, f] = [e, f_1]$, then $(e, f) = (eg, g^{-1}f_1)$ for a suitable $g \in G$. This means e = eg, which in turn means g = 1, for G acts freely on E. Thus $f = f_1$. Thus $f \in F$ completely determined by $e \in E$ and the section σ as the unique element such that $\sigma(\pi(e)) = [e, f]$. This unique f may therefore be written as $f = \varphi_{\sigma}(e)$. The assignment $e \mapsto \varphi_{\sigma}(e)$ gives a map

 $\varphi_{\sigma} \colon E \to F$

and it is characterized by the formula $\sigma \circ \pi(e) = [e, \varphi_{\sigma}(e)]$ for $e \in E$. Now

$$[eg, g^{-1}\varphi_{\sigma}(e)] = [e, \varphi_{\sigma}(e)] \qquad (e \in E, g \in G)$$

whence,

$$\varphi_{\sigma}(eg) = g^{-1}\varphi_{\sigma}(e) \qquad (e \in E, g \in G).$$

This means $\varphi_{\sigma} \colon E \to F$ is *G*-equivariant for the *right G*-action on *F*.

Conversely, if $\varphi \colon E \to F$ is *G*-equivariant, i.e., $\varphi(eg) = g^{-1}\varphi(e)$ for $e \in E$ and $g \in G$, then the element $[e, \varphi(e)]$ depends only on the image $x = \pi(e)$ and not on *e*. Indeed, if $e' \in E$ is another point on the fibre of π over *x*, then e' = eg for a unique $g \in G$, and $\varphi(e') = \varphi(eg) = g^{-1}\varphi(e)$. Thus $[e', \varphi(e')] = [eg, g^{-1}\varphi(e)] = [e, \varphi(e)]$. Thus the map $E \to E(F)$ given by $e \mapsto [e, \varphi(e)]$ factors through *X*, and we get a map

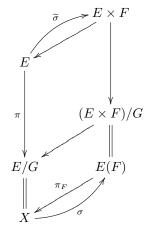
$$\sigma_{\varphi} \colon X \to E(F)$$

given by

$$x \mapsto [e, \varphi(e)] \qquad (x \in X)$$

where e is any element of $\pi^{-1}(x)$.

Perhaps the most conceptual way of seeing this correspondence between sections of $\pi_F \colon E(F) \to X$ and *G*-equivariant maps $G \to F$ is as follows. As we noted above, *G* acts on the right on $E \times F$ by the formula $(e, f) \cdot g = (eg, g^{-1}f)$ for $(e, f) \in G \times F$ and $g \in G$, and $E(F) = (E \times F)/G$. Further X = E/G. Clearly, a *G*-equivariant section of $E \times F \to E$ descends to a section of $(E \times F)/G \to E/G$. Conversely, every section of $(E \times F)/G \to E/G$ gives rise to a *G*-equivariant section of $E \times F \to E$, for $E \times F = E \times_{E/G} ((E \times F)/G)$. However, *G*-equivariant sections $\widetilde{\sigma}: E \to E \times F$ of $E \times F \to E$ are exactly the maps $(1_E, \varphi)$ where $\varphi: E \to F$ is *G*-equivariant.



Whichever way we look at it, we end up with the following:

Lemma 2.1.1. There is a bijective correspondence between the sections of E(F) over X and G-equivariant maps $E \to F$ for the right actions of G on E and F.

- **Remarks 2.1.2.** (1) If $\varphi: E \to G/H$ is *G*-equivariant (therefore giving rise to a unique section of $E/H \to X$, then the corresponding *H*-sub-bundle *P* of $\pi: E \to X$ can be obtained directly by setting $P = \varphi^{-1}(\xi_0)$ where ξ_0 is the distinguished point of G/H, namely the image of the identity element $\varepsilon \in G$ under the natural map $G \to G/H$. Since φ is *G*-equivariant, and since ξ_0 is *H*-invariant, clearly *P* is *H*-stable. It is not hard to see that $P \to X$ is in fact a principal *H* bundle and the inclusion of *P* into *E* is *H*-equivariant.
 - (2) If X is a differential manifold and $E^T \to X$ the principal $GL_n(\mathbf{R})$ -bundle associated to the tangent bundle $T_X \to X$, then a Riemannian structure on X can be re-interpreted as a reduction of structure group of E^T to $SO_n(\mathbf{R})$. In particular, Riemannian structures on X are in bijective correspondence with sections $\sigma: X \to E^T/SO_n(\mathbf{R})$ of the fibre bundle $E^T/SO_n(\mathbf{R}) \to X$.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no[°] 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [EGA I] _____, Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
- [EGA II] _____, Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
- [EGA III₁] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
- [EGA III₂] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
- [EGA IV₁] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).

LECTURE 18

- [EGA IV₂] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
- [EGA IV₃] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
- [EGA IV₄] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
- [SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.