LECTURE 17

1. $E(F)$ as the quotient of $E \times_{S} F$ by an equivalence relation

1.1. As before, let $\pi: E \rightarrow X$ be a G-torsor, and $F \rightarrow S$ a locally quasi-affine G-space, and $F_{X^{\prime}}:=X^{\prime} \times_{S} F$. The last time we stated without proof that $E(F)$ is realisable as $F_{X^{\prime}} / R_{\theta}$ where $X^{\prime} \rightarrow X$ is a trivialising fpqc cover of $E \rightarrow X$, $\theta: G_{X^{\prime}} \xrightarrow{\sim} E_{X^{\prime}}$ a trivialisation, and R_{θ} given by the equivalence relations

$$
\begin{equation*}
\left(\left(x_{,}^{\prime} f_{1}\right) R_{\theta}(T)\left(x_{2}^{\prime}, f_{2}\right)\right) \Longleftrightarrow p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right) \text { and } f_{1}=g_{\theta}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2} \tag{1.1.1}
\end{equation*}
$$

Let us postpone the (easy) proof to the next lecture. However note that if $X^{\prime}=E$ with the trivialising cover $X^{\prime} \rightarrow X$ being $E \xrightarrow{\pi} X$, and if the trivialsation θ is given by the orbit $\psi=\psi_{\delta}$ map of the diagonal section $\delta: E \rightarrow E \times_{X} E$, i.e. the map

$$
\psi:(e, g) \mapsto(e, e g)
$$

from G_{E} to $E \times_{X} E$, then the above description shows that

$$
\begin{equation*}
E(F)=\left(E \times_{S} F\right) / \sim \tag{1.1.2}
\end{equation*}
$$

where the equivalence relation \sim is given by $(e, f) \sim\left(e g, g^{-1} f\right)$ for appropriate e, f, and g. Indeed for two T-valued point $e, e^{*}: T \rightrightarrows E, e^{*}=e g$ for some $g \in G(T)$ if and only if $\pi(e)=\pi\left(e^{*}\right)$ and in this case g is unique. In fact, $p(e)=p\left(e^{*}\right)$ implies that $e^{*}=e g_{\psi}\left(e, e^{*}\right)$ and this defines the unique g such that $e^{*}=e g$. Thus, we have the equality

$$
g_{\psi}(e, e g)=g
$$

where ψ is the "diagonal trivialisation" on $E \times{ }_{X} E \rightarrow E$ (via the first projection). It follows that on $\left(E \times{ }_{S} F\right)(T)$ we have $(e, f) \sim\left(e^{*}, f^{*}\right)$ if and only if $e^{*}=e g$ for some $g \in G(T)$, necessarily unique, and for this $g, f=g f^{*}$. Thus $\left(e, g f^{*}\right) \sim\left(e g, f^{*}\right)$, or, equivalently, $(e, f) \sim\left(e g, g^{-1} f\right)$.
1.2. Let $\pi: E \rightarrow X$ and $F \rightarrow S$ be as above. To lighten notation, write $E^{\prime}=$ $E_{X^{\prime}}$ and $E^{\prime \prime}=E_{X^{\prime \prime}}$ and let the respective maps to X^{\prime} and $X^{\prime \prime}$ be $\pi^{\prime}: E^{\prime} \rightarrow$ X^{\prime} and $\pi^{\prime \prime}: E^{\prime \prime} \rightarrow X^{\prime \prime}$. With $F \rightarrow S$ as above, we have associated fibre spaces $\pi_{F}: E(F) \rightarrow X, \pi_{F}^{\prime}: E^{\prime}(F) \rightarrow X^{\prime}$, and $\pi_{F}^{\prime \prime}: E^{\prime \prime}(F) \rightarrow X^{\prime \prime}$. It is immediate (from the construction of $E(F)$ via the trivialization θ) that $E^{\prime}(F)=X^{\prime} \times_{X} E(F)$ and $E^{\prime \prime}(F)=X^{\prime \prime} \times_{X} E(F)$ and that under these identifications, $\pi_{F}^{\prime}=X^{\prime} \times_{X} \pi_{F}$, and $\pi_{F}^{\prime \prime}=X^{\prime \prime} \times_{X} \pi_{F}=X^{\prime \prime} \times_{X^{\prime}} \pi_{F}^{\prime}$. For $i=1,2$, let

$$
q_{i}^{F}: E^{\prime \prime}(F) \rightarrow E^{\prime}(F)
$$

be the base change of $p_{i}: X^{\prime \prime} \rightarrow X^{\prime}$ under the map $\pi_{F}^{\prime}: E^{\prime}(F) \rightarrow X^{\prime}$, and let

$$
q^{F}: E^{\prime}(F) \rightarrow E(F)
$$

[^0]be the base change of $p: X^{\prime} \rightarrow X$ by the map $\pi: E(F) \rightarrow X$. We then have a cartesian square

Next, recall we have an isomorphism

$$
\theta_{F}: F_{X^{\prime}} \xrightarrow{\sim} E^{\prime}(F)
$$

of fibre-spaces over X^{\prime} with structure group G such that the induced automorphism

$$
\psi_{12}:=p_{1}^{*}\left(\theta_{F}\right)^{-1} \circ p_{2}^{*}\left(\theta_{F}\right)
$$

of the $X^{\prime \prime}$-schemes $F_{X^{\prime \prime}}$ is given by

$$
\left(x^{\prime \prime}, f\right) \mapsto\left(x^{\prime \prime}, g_{\theta}\left(x^{\prime \prime}\right) f\right)
$$

For $i=1,2$, let

$$
r_{i}: E^{\prime \prime}(F) \rightarrow F_{X^{\prime}}
$$

be the map $r_{i}=\theta_{F}^{-1} \circ q_{i}^{F}$ and

$$
s: F_{X^{\prime}} \rightarrow E(F)
$$

the natural map arising from the construction of $E(F)$ (by making $F_{X^{\prime}}$ "descend" from X^{\prime} to X along $p: X^{\prime} \rightarrow X$). Note $s=q^{F} \circ \theta_{F}$. We therefore have a cartesian diagram

Thus $E^{\prime \prime}(F)$ is an equivalence relation on $F_{X^{\prime}}$. The two cartesian diagrams above fit into the following expanded commutative diagram, in which we write $\theta^{(i)}$ as a shorthand for the typographically inconvenient $\operatorname{symbol} p_{i}^{*}\left(\theta_{F}\right)$, for $i=1,2$.

Using this, it is not hard to see that if $s\left(x_{1}^{\prime}, f_{1}\right)=s\left(x_{2}^{\prime}, f_{2}\right)$ for two valued points $\left(x_{1}^{\prime}, f_{1}\right)$ and $\left(x_{2}^{\prime}, f_{2}\right)$ of $F_{X^{\prime}}$ with the same source, (i.e., the two points determine a unique point of $\left.E^{\prime \prime}(F)\right)$ then (a) $p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right)$ and (b) $f_{1}=g_{\theta}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2}$. Conversely, if $\left(x_{1}^{\prime}, f_{1}\right)$ and $\left(x_{2}^{\prime}, f_{2}\right)$ (valued points of on $F_{X^{\prime}}$ with the same source) satisfy (a) and (b), then necessarily $s\left(x_{1}^{\prime}, f_{1}\right)=s\left(x_{2}^{\prime}, f_{2}\right)$. This just means that $E^{\prime \prime}(F)$ represents the equivalence the functor R_{θ}, whence R_{θ} is a scheme-theoretic
equivalence relation. Since the map $s: F_{X^{\prime}} \rightarrow E(F)$ is a fpqc, it follows from earlier discussions that $E(F)=F_{X^{\prime}} / R_{\theta}$. We will give details of the proof of $R_{\theta}=E^{\prime \prime}(F)$ in the next lecture.

2. Principal Bundles and the space $E(G / H)$

Let us return to the topological situation. So, G is a topological group and all topological spaces (including G) in this section are Hausdorff, and all actions of G on topological spaces are continuous.
2.1. The principal bundle $G \rightarrow G / H$. Suppose H is a closed subgroup of G. The space G / H has a natural structure of a topological space, via the quotient topology induced from G and the natural map $p_{H}: G \rightarrow G / H$. This means that G / H has the coarsest topology which makes $p_{H}: G \rightarrow G / H$ continuous. In even simpler terms, a subset $S \subset G / H$ is an open subset if and only if $p^{-1}(S)$ is open in G, and this defines a topology on G / H. Recall that a continuous map $f: V \rightarrow W$ is said to have local sections if each point $w \in W$ has an open neighborhood U and a continuous section of the map $\left.f^{(} U\right) \rightarrow U$ induced by restricting f to $f^{1}(U)$.

Lemma 2.1.1. The continuous map $p_{H}: G \rightarrow G / H$ is H-equivariant for the right action of H on G and the trivial action of H on G / H. Moreover, $p_{H}: G \rightarrow G / H$ is a principal H-bundle with this right action of H on G, if and only if p_{H} has local sections.

Proof. Every principal bundle has local sections, for trivialisations are equivalent to sections. Thus we only have to prove that if $p_{H}: G \rightarrow G / H$ has local sections, then it is a principal H-bundle. Suppose $\mathscr{U}=\left\{U_{\alpha}\right\}$ is a cover of X and for each index α we have continuous sections $\sigma_{\alpha}: U_{\alpha} \rightarrow p_{H}^{-1}\left(U_{\alpha}\right)$ of the map $p_{H}^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha}$ induced by α. For each α the map

$$
U_{\alpha} \times H \xrightarrow{\varphi_{\alpha}} p_{H}^{-1}\left(U_{\alpha}\right)
$$

given by

$$
(u, h) \mapsto \sigma_{\alpha}(u) h
$$

is clearly a bijective map at the level of sets. It is continuous because σ_{α} is continuous and multiplication in G is continuous on $G \times G$. To see the inverse is continuous, we examine the inverse more closely. If $g \in p_{H}^{-1}\left(U_{\alpha}\right)$, and we write $u=p_{H}(g)$ then g and $\sigma(u)$ lie on the same fibre of p, namely the coset $g H$. It follows that there is a unique $h\left(=h_{\alpha}(g)\right)$ in H such that $\sigma_{\alpha}(u) h=g$. The inverse map is then $g \mapsto\left(p_{H}(g), h_{\alpha}(g)\right)$. It is clear that $g \mapsto h_{\alpha}(g)$ is a continuous map from $p_{H}^{-1}\left(U_{\alpha}\right)$ to H. Indeed $h_{\alpha}(g)=\left(\sigma_{\alpha}(p(g))\right)^{-1} g$, exhibiting h_{α} as a composite of continuous maps on G. This gives local trivialisations. Since $p_{H}: G \rightarrow G / H$ is H-equivariant and has local trivialisations, we are done by Problem (12) of your Mid-Term exam.

Remark 2.1.2. It may be instructive to work out the 1-cocyles arising from the σ_{α} in the proof of the lemma. For two indices α and β, define

$$
h_{\alpha \beta}: U_{\alpha \beta} \rightarrow H
$$

by

$$
h_{\alpha \beta}(u)=\sigma_{\alpha}(u)^{-1} \sigma_{\beta}(u)
$$

for $u \in U_{\alpha \beta}$. Again, since $\sigma_{\alpha}(u)$ and $\sigma_{\beta}(u)$ lie in the same coset of H (recall, fibres of p are cosets of H), therefore $h_{\alpha \beta}$ does indeed take values in H. Moreover, it is continuous since taking inverses and multiplication are continuous operations. Obviously $\left(h_{\alpha \beta}\right)$ is a 1-cocycle.
2.2. The space $E(G / H)$ and the space E / H. Let $\pi: E \rightarrow X$, and H be as above, and assume $p_{H}: G \rightarrow G / H$ has local sections. Now G acts on G / H and hence we get the associated fibre bundle $\varpi: E(G / H) \rightarrow X$. Clearly if E is the trivial principal bundle $X \times G$, then $E(G / H)=X \times(G / H)$ by construction of $E(F)$ via 1-cocyles. However, $X \times(G / H)=(X \times G) / H$. Thus $E(G / H)=E / H$ in this case. In the general case, suppose $\mathscr{U}=\left\{U_{\alpha}\right\}$ is an open cover and we have G-trivialisations

$$
\varphi_{\alpha}: G_{U_{\alpha}} \xrightarrow{\sim} \pi^{-1}\left(U_{\alpha}\right)=U_{\alpha} \times_{X} E
$$

giving rise to the 1-cocycle $\left(g_{\alpha \beta}\right)$. Then

$$
E=\coprod_{\alpha}\left(U_{\alpha} \times G\right) / R
$$

for the equivalence relation R induced by $\left(g_{\alpha \beta}\right)$. If $X^{\prime}=\coprod_{\alpha} U_{\alpha}$, then the principal G-bundle $E_{X^{\prime}} \rightarrow X^{\prime}$ is a trivial torsor, and $E_{X^{\prime}}(G / H)$ is therefore isomorphic to $X^{\prime} \times(G / H)=\left(X^{\prime} \times G\right) / H$. The 1-cocyle $\left(g_{\alpha \beta}\right)$ gives rise to an equivalence R_{H} relation on $\left(X^{\prime} \times G\right) / H$ and $E(G / H)$ has a realisation as $\left(X^{\prime} \times G / H\right) / R_{H}$. Since both R and R_{H} arise from $\left(g_{\alpha \beta}\right)$ and the left action of G on $X^{\prime} \times G$ commutes with the right action of G, it is not hard to see that the following diagram commutes

The net result is that we have $E(G / H)=E / H$.
There is a more canonical way of seeing this which is perhaps more illustrative. Let $\varepsilon \in G$ be the identity element, and $\xi_{0} \in G / H$ the image of ε under the natural map $p: G \rightarrow G / H$. We have a natural continuous map

$$
\varpi: E \rightarrow E(G / H)
$$

given by

$$
e \mapsto\left[e, \xi_{0}\right] .
$$

Note that $\left[e, \xi_{0}\right]=\left[e^{\prime}, \xi_{0}\right]$ if and only if there is an element (necessarily unique) $g \in G$ such that $\left(e^{\prime}, \xi_{0}\right)=\left(e g, g^{-1} \xi_{0}\right)$. This forces the equation $g \xi_{0}=\xi_{0}$, i.e., $g \in H$. Thus $\varpi(e)=\varpi\left(e^{\prime}\right)$ if and only if they are in the same H-orbit. It follows that

$$
\begin{equation*}
E(G / H)=E / H \tag{2.2.1}
\end{equation*}
$$

and under this identification $\varpi: E \rightarrow E(G / H)$ is the quotient map $E \rightarrow E / H$. Let

$$
t: E / H \rightarrow X
$$

denote the resulting fibre bundle with fibre G / H. We then have a commutative diagram

Proposition 2.2.3. Suppose $p_{H}: G \rightarrow G / H$ has local sections. The space E is a principal H-bundle over $E(G / H)=E / H$.

Proof. Clearly $\varpi: E \rightarrow E / H$ is H-equivariant for the trivial H-action on E / H. Let $\mathscr{W}=\left\{W_{i}\right\}$ be a trivializing cover for the principal H-bundle $p_{H}: G \rightarrow G / H$. Let $\mathscr{U}=\left\{U_{\alpha}\right\}$ be a trivializing cover for the principal G-bundle $\pi: E \rightarrow X$. Then \mathscr{U} is a also a trivializing cover for the fibre-bundle $t: E / H \rightarrow X$. It follows that on $t^{-1}\left(U_{\alpha}\right)$ we can find an open cover $\mathscr{V}=\left\{V_{\alpha i}\right\}$ such that each $V_{\alpha i}$ is homeomorphic to $U_{\alpha} \times W_{i}$, and $\varpi^{-1}\left(V_{\alpha i}\right) \rightarrow V_{\alpha i}$ is a trivial principal H-bundle. From Problem (12) of the mid-term, the result follows.

3. Reduction of structure groups

Let $\pi: E \rightarrow X$ be a principal G-bundle and H a closed subgroup of G. Recall that this principal G-bundle is said to have a reduction of structure group to H if there is an open cover $\mathscr{U}=\left\{U_{\alpha}\right\}$ and 1-cocycle $\left(h_{\alpha \beta}\right)$ for $E \rightarrow X$ with respect to \mathscr{U} such that the $h_{\alpha \beta}$ take values in H.

There is another way of viewing this. If \mathscr{H} is the sheaf $U \mapsto\{U \xrightarrow{\psi} H \mid \psi$ is continuous $\}$ and \mathscr{G} the sheaf $U \mapsto\{U \xrightarrow{\varphi} G \mid \varphi$ is continuous $\}$ then we have a natural map

$$
h_{*}: \mathrm{H}^{1}(X, \mathscr{H}) \rightarrow \mathrm{H}^{1}(X, \mathscr{G})
$$

for every 1-cocycle with values in H is a 1-cocycle with values in G and if two of them are H-cohomologous, then they are G-cohomologous. Let $\zeta \in \mathrm{H}^{1}(X, \mathscr{G})$ be the element defined by the isomorphism class of E. The structure group of E is reducible to H is and only if ζ is in the image of h_{*}. In this case, a specific choice of an element $\xi \in \mathrm{H}^{1}(X, \mathscr{H})$ such that $h_{*} \xi=\zeta$ is a reduction of structure group of E to H.

Assumption: From now on we assume that the map $G \rightarrow G / H$ has local sections.
3.1. Suppose we are given a 1-cocycle $\left(h_{\alpha \beta}\right)$ for $E \rightarrow X$ with respect to \mathscr{U} such that the $h_{\alpha \beta}$ take values in H. We can construct a principal H-bundle

$$
p: P \rightarrow H
$$

from our cocycle, and we have a natural H-equivariant inclusion of a closed subspace $i: P \hookrightarrow E$ such that $\pi \circ i=p$:

In fact the natural inclusion $\coprod_{\alpha} U_{\alpha} \times H \hookrightarrow \coprod_{\alpha} U_{\alpha} \times G$ is H-equivariant for the right and left actions, and since P and E are obtained by quotienting by the same cocycle acting on the left, the right action survives the compatible quotienting processes and gives $i: P \hookrightarrow E$.

Conversely, given a commutative diagram as above with $i: P \rightarrow E$ an H equivariant inclusion map, identifying P as a H-stable closed subspace of E, we can find local sections $\sigma_{\alpha}: U_{\alpha} \rightarrow p^{-1}\left(U_{\alpha}\right)$ of $p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha}$ and maps

$$
h_{\alpha \beta}: U_{\alpha \beta} \rightarrow H
$$

satisfying

$$
\sigma_{\beta}(u)=\sigma_{\alpha}(u) h_{\alpha \beta}(u) \quad\left(u \in U_{\alpha \beta}\right)
$$

Then $\left(h_{\alpha \beta}\right)$ is a 1-cocycle. Now $i \circ \sigma_{\alpha}=\tau_{\alpha}$ (say) give rise to local sections of $\pi: E \rightarrow X$, and since i is H-equivariant, the corresponding cocycle is precisely $\left(h_{\alpha \beta}\right)$. In other words we have a reduction of the structure group G to H.

There is yet another way of seeing that principal H-sub-bundles $p: P \rightarrow X$ of $\pi: E \rightarrow X$ give a reduction of structure group of E to H. Note that by H -sub-bundle we mean that $p: P \rightarrow X$ fits into the diagram (3.1.1) with $i: P \rightarrow E$ H-equivariant and an inclusion of a closed subspace. Now H acts on G from the left by multiplication, and since this action commutes with the right action of G on G, the resulting associated fibre bundle $P(G)$ has a right G-action on it, and hence is necessarily a principal G-bundle since it is already locally trivial (using the trivialisations of $P \rightarrow X)$. In fact the transition functions for $P(G)$ are the same as that for P and hence $P(G)$ has a reduction of structure group to H. We shall show that $P(G) \rightarrow X$ and $\pi: E \rightarrow X$ are isomorphic as principal G-bundles. That will show that H-sub-bundles like P give rise to reductions of structure groups. To that end, let $[a, g] \in P(G)$. Recall $[a, g]=\left[a^{\prime}, g^{\prime}\right]$ if and only if there is an $h \in H$ such that $\left(a^{\prime}, g^{\prime}\right)=\left(a h, h^{-1} g\right)$. Define

$$
P(G) \rightarrow E
$$

by

$$
[a, g] \mapsto i(a) g .
$$

This is clearly well defined (since i is H-equivariant), G-equivariant, and continuous. The inverse map is as follows. Let $e \in E$ and set $x=\pi(e)$. Let $a \in P$ be any element in the fibre of x in P. (Note that if $a^{\prime} \in P$ is another element such that $p\left(a^{\prime}\right)=x$ then there is a unique $h \in H$ such that $a^{\prime}=a h$.) Let $g \in G$ be the unique element such that $e=i(a) g$. The element $[a, g] \in P(E)$ does not depend on the choice of a in $p^{-1}(x)$, for by the H-equivariance of i, we have $e=i(a h) h^{-1} g$ for $h \in H$, and $[a, g]=\left[a h, h^{-1} g\right]$. The map

$$
E \rightarrow P(E)
$$

given by $e \mapsto[a, g]$, with a and g as above, is continuous, and gives the required inverse. Thus

$$
P(G) \xrightarrow{\sim} E .
$$

3.2. A particular reduction of structure group. Diagram (2.2.2) can be expanded to

where $t^{*} E$ is a short-hand for $E / H \times_{X} E$ and \tilde{t} and $\widetilde{\pi}$ are the projections. We have a map

$$
\widetilde{\sigma}_{0}: E \rightarrow t^{*} E
$$

given by $e \mapsto(\varpi(e), e)$. This is a section, and hence identifies E as a closed subspace of $t^{*} E$. Clearly $\widetilde{\pi} \circ \widetilde{\sigma}_{0}=\varpi$. Further, for $h \in H$ and $e \in E$

$$
\widetilde{\sigma}_{0}(e h)=(\varpi(e h), e h)=(\varpi(e),, e h)=(\varpi(e), e) \cdot h=\left(\widetilde{\sigma}_{0}(e)\right) h
$$

Thus $\widetilde{\sigma}_{0}$ is H-equivariant. Recall that reductions of structure groups are characterized by diagrams such as (3.1.1). Thus $E \rightarrow E / H$ is a principal H-sub-bundle of $t^{*} E$, thus giving a reduction of structure group of $\widetilde{\pi}: t^{*} E \rightarrow E / H$ to H.

Theorem 3.2.2. Let H be a closed subgroup of G such that the canonical map $p_{H}: G \rightarrow G / H$ has local sections. With notations as above, reductions of structure group of the principal G-bundle E to H are in bijective correspondence with sections of the fibre bundle $t: E / H \rightarrow X$. Equivalently, such reductions are in bijective correspondence with G-equivariant continuous maps from E to G / H.

Proof. We will prove in the next lecture that sections of $E / H \xrightarrow{t} X$ are in bijective correspondence with G-equivariant maps from E to G / H. In fact we will prove, more generally, that sections of $\pi_{F}: E(F) \rightarrow X$ are in one-to-one correspondence with G-equivariant maps $\varphi: E \rightarrow F$.

Next, we have a commutative diagram which is formally like (3.1.1) namely

If we have a section $\sigma: X \rightarrow E / H$ of $t: E / H \rightarrow X$, then $\sigma^{*}(3.2 .3)$ is a diagram of the form (3.1.1) with $P=\sigma^{*} E, i=\sigma^{*} \widetilde{\sigma}_{0}$, etc. Thus we have a reduction of the structure group for E to H.

Conversely, suppose we have a reduction of structure group of E to H. In other words we have a commutative diagram as in (3.1.1). Since $p: P \rightarrow X$ is a principal H-bundle, we have local sections $s_{\alpha}: U_{\alpha} \rightarrow p^{-1}\left(U_{\alpha}\right)$ of p such that $\mathscr{U}=\left\{U_{\alpha}\right\}$ forms an open cover of X. Let $\left(h_{\alpha \beta}\right)$ be the corresponding 1-cocycle for the local
trivialisations of $p: P \rightarrow X$ given by the s_{α}. Recall that for a pair of indices (α, β), $h_{\alpha \beta}: U_{\alpha \beta} \rightarrow H$ is the unique map satisfying

$$
s_{\beta}(u)=s_{\alpha}(u) h_{\alpha \beta}(u) \quad\left(u \in U_{\alpha \beta}\right)
$$

Let $\tau_{\alpha}=i \circ s_{\alpha}$. Then τ_{α} is a local section of $E \rightarrow X$ over U_{α}. Moreover, since i is H-equivariant, we have

$$
\tau_{\beta}(u)=\tau_{\alpha}(u) h_{\alpha \beta}(u) \quad\left(u \in U_{\alpha \beta}\right)
$$

Let $\sigma_{\alpha}=\varpi \circ \tau_{\alpha}: U_{\alpha} \rightarrow E / H$. Since $\varpi(e h)=\varpi(e)$ for all $e \in E$ and $h \in H$, it follows that

$$
\left.\sigma_{\alpha}\right|_{U_{\alpha \beta}}=\left.\sigma_{\beta}\right|_{U_{\alpha \beta}}
$$

for all α and β. Thus we get a section

$$
\sigma: X \rightarrow E / H
$$

of $t: E / H \rightarrow X$.
Remark 3.2.4. If $\varphi: E \rightarrow G / H$ is G-equivariant, then the corresponding H-subbundle of $\pi: E \rightarrow X$ can be obtained directly by setting $P=\varphi^{-1}\left(\xi_{0}\right)$ where ξ_{0} is the distinguished point of G / H, namely the image of the identity element $\varepsilon \in G$ under the natural map $G \rightarrow G / H$. Since φ is G-equivariant, and since ξ_{0} is H invariant, clearly P is H-stable. It is not hard to see that $P \rightarrow X$ is in fact a principal H bundle and the inclusion of P into E is H-equivariant.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ $(1956 / 57), 182(1958 / 59), 190(1959 / 60), 195(1959 / 60), 212(1960 / 61), 221(1960 / 61), 232$ (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGA II] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III $\left.{ }_{1}\right]$ _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA III ${ }_{2}$ _ , Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
[EGA IV $\left.{ }_{1}\right]$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
[EGAIV 2_{2} _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
$\left[\mathrm{EGA} \mathrm{IV}_{3}\right]$ _ Élements de géométrie algébrique $I V$. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
$\left[\mathrm{EGA} \mathrm{IV}_{4}\right]$ _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES $32(1967)$.
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: October 15, 2012.

