
LECTURE 17

1. E(F ) as the quotient of E ×S F by an equivalence relation

1.1. As before, let π : E → X be a G-torsor, and F → S a locally quasi-affine
G-space, and FX′ := X ′ ×S F . The last time we stated without proof that E(F )
is realisable as FX′/Rθ where X ′ → X is a trivialising fpqc cover of E → X,
θ : GX′ −→∼ EX′ a trivialisation, and Rθ given by the equivalence relations

(1.1.1) ((x′, f1)Rθ(T ) (x′2, f2))⇐⇒ p(x′1) = p(x′2) and f1 = gθ(x
′
1, x

′
2)f2.

Let us postpone the (easy) proof to the next lecture. However note that if X ′ = E

with the trivialising cover X ′ → X being E
π−→ X, and if the trivialsation θ is given

by the orbit ψ = ψδ map of the diagonal section δ : E → E ×X E, i.e. the map

ψ : (e, g) 7→ (e, eg)

from GE to E ×X E, then the above description shows that

(1.1.2) E(F ) = (E ×S F )/ ∼

where the equivalence relation ∼ is given by (e, f) ∼ (eg, g−1f) for appropriate e,
f , and g. Indeed for two T -valued point e, e∗ : T ⇒ E, e∗ = eg for some g ∈ G(T )
if and only if π(e) = π(e∗) and in this case g is unique. In fact, p(e) = p(e∗) implies
that e∗ = egψ(e, e∗) and this defines the unique g such that e∗ = eg. Thus, we
have the equality

gψ(e, eg) = g

where ψ is the “diagonal trivialisation” on E×XE → E (via the first projection). It
follows that on (E×SF )(T ) we have (e, f) ∼ (e∗, f∗) if and only if e∗ = eg for some
g ∈ G(T ), necessarily unique, and for this g, f = gf∗. Thus (e, gf∗) ∼ (eg, f∗),
or, equivalently, (e, f) ∼ (eg, g−1f).

1.2. Let π : E → X and F → S be as above. To lighten notation, write E′ =
EX′ and E′′ = EX′′ and let the respective maps to X ′ and X ′′ be π′ : E′ →
X ′ and π′′ : E′′ → X ′′. With F → S as above, we have associated fibre spaces
πF : E(F ) → X, π′F : E′(F ) → X ′, and π′′F : E′′(F ) → X ′′. It is immediate (from
the construction of E(F ) via the trivialization θ) that E′(F ) = X ′ ×X E(F ) and
E′′(F ) = X ′′ ×X E(F ) and that under these identifications, π′F = X ′ ×X πF , and
π′′F = X ′′ ×X πF = X ′′ ×X′ π′F . For i = 1, 2, let

qFi : E′′(F )→ E′(F )

be the base change of pi : X
′′ → X ′ under the map π′F : E′(F )→ X ′, and let

qF : E′(F )→ E(F )
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be the base change of p : X ′ → X by the map π : E(F ) → X. We then have a
cartesian square

E′′(F )

�

qF2 //

qF1
��

E′(F )

qF

��
E′(F )

qF
// E(F )

Next, recall we have an isomorphism

θF : FX′ −→∼ E′(F )

of fibre-spaces over X ′ with structure group G such that the induced automorphism

ψ12 := p∗1(θF )−1 ◦p∗2(θF )

of the X ′′-schemes FX′′ is given by

(x′′, f) 7→ (x′′, gθ(x
′′)f).

For i = 1, 2, let
ri : E

′′(F )→ FX′

be the map ri = θ−1F ◦ qFi and

s : FX′ → E(F )

the natural map arising from the construction of E(F ) (by making FX′ “descend”
from X ′ to X along p : X ′ → X). Note s = qF ◦ θF . We therefore have a cartesian
diagram

E′′(F )

�

r
2 //

r
1

��

FX′

s

��
FX′

s
// E(F )

Thus E′′(F ) is an equivalence relation on FX′ . The two cartesian diagrams above
fit into the following expanded commutative diagram, in which we write θ(i) as a
shorthand for the typographically inconvenient symbol p∗i (θF ), for i = 1, 2.

FX′′

θ(2) o
��

//
ψ12

��

FX′

o θF
��

s

||

FX′′ ˜θ(1) //
��

E′′(F )
qF2

//

qF1
��

r2

::uuuuuuuuu

r1

{{www
ww
ww
ww

�

E′(F )

qF

��
FX′

θF̃

//

s

>>
E′(F )

qF
// E(F )

Using this, it is not hard to see that if s(x′1, f1) = s(x′2, f2) for two valued points
(x′1, f1) and (x′2, f2) of FX′ with the same source, (i.e., the two points determine
a unique point of E′′(F )) then (a) p(x′1) = p(x′2) and (b) f1 = gθ(x

′
1, x

′
2)f2. Con-

versely, if (x′1, f1) and (x′2, f2) (valued points of on FX′ with the same source)
satisfy (a) and (b), then necessarily s(x′1, f1) = s(x′2, f2). This just means that
E′′(F ) represents the equivalence the functor Rθ, whence Rθ is a scheme-theoretic
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equivalence relation. Since the map s : FX′ → E(F ) is a fpqc, it follows from earlier
discussions that E(F ) = FX′/Rθ. We will give details of the proof of Rθ = E′′(F )
in the next lecture.

2. Principal Bundles and the space E(G/H)

Let us return to the topological situation. So, G is a topological group and all
topological spaces (including G) in this section are Hausdorff, and all actions of G
on topological spaces are continuous.

2.1. The principal bundle G → G/H. Suppose H is a closed subgroup of G.
The space G/H has a natural structure of a topological space, via the quotient
topology induced from G and the natural map pH : G → G/H. This means that
G/H has the coarsest topology which makes pH : G → G/H continuous. In even
simpler terms, a subset S ⊂ G/H is an open subset if and only if p−1(S) is open in
G, and this defines a topology on G/H. Recall that a continuous map f : V → W
is said to have local sections if each point w ∈W has an open neighborhood U and
a continuous section of the map f (U)→ U induced by restricting f to f 1(U).

Lemma 2.1.1. The continuous map pH : G→ G/H is H-equivariant for the right
action of H on G and the trivial action of H on G/H. Moreover, pH : G → G/H
is a principal H-bundle with this right action of H on G, if and only if pH has local
sections.

Proof. Every principal bundle has local sections, for trivialisations are equivalent
to sections. Thus we only have to prove that if pH : G → G/H has local sections,
then it is a principal H-bundle. Suppose U = {Uα} is a cover of X and for each
index α we have continuous sections σα : Uα → p−1H (Uα) of the map p−1H (Uα)→ Uα
induced by α. For each α the map

Uα ×H
ϕα−−→ p−1H (Uα)

given by

(u, h) 7→ σα(u)h

is clearly a bijective map at the level of sets. It is continuous because σα is con-
tinuous and multiplication in G is continuous on G × G. To see the inverse is
continuous, we examine the inverse more closely. If g ∈ p−1H (Uα), and we write
u = pH(g) then g and σ(u) lie on the same fibre of p, namely the coset gH. It
follows that there is a unique h (=hα(g)) in H such that σα(u)h = g. The inverse
map is then g 7→ (pH(g), hα(g)). It is clear that g 7→ hα(g) is a continuous map
from p−1H (Uα) to H. Indeed hα(g) = (σα(p(g)))−1g, exhibiting hα as a composite
of continuous maps on G. This gives local trivialisations. Since pH : G → G/H
is H-equivariant and has local trivialisations, we are done by Problem (12) of your
Mid-Term exam. �

Remark 2.1.2. It may be instructive to work out the 1-cocyles arising from the
σα in the proof of the lemma. For two indices α and β, define

hαβ : Uαβ → H

by

hαβ(u) = σα(u)−1σβ(u)



4 LECTURE 17

for u ∈ Uαβ . Again, since σα(u) and σβ(u) lie in the same coset of H (recall, fibres
of p are cosets of H), therefore hαβ does indeed take values in H. Moreover, it
is continuous since taking inverses and multiplication are continuous operations.
Obviously (hαβ) is a 1-cocycle.

2.2. The space E(G/H) and the space E/H. Let π : E → X, and H be as
above, and assume pH : G → G/H has local sections. Now G acts on G/H and
hence we get the associated fibre bundle $ : E(G/H) → X. Clearly if E is the
trivial principal bundle X × G, then E(G/H) = X × (G/H) by construction of
E(F ) via 1-cocyles. However, X × (G/H) = (X × G)/H. Thus E(G/H) = E/H
in this case. In the general case, suppose U = {Uα} is an open cover and we have
G-trivialisations

ϕα : GUα −→∼ π−1(Uα) = Uα ×X E

giving rise to the 1-cocycle (gαβ). Then

E =
∐
α

(Uα ×G)/R

for the equivalence relation R induced by (gαβ). If X ′ =
∐
α Uα, then the principal

G-bundle EX′ → X ′ is a trivial torsor, and EX′(G/H) is therefore isomorphic to
X ′ × (G/H) = (X ′ × G)/H. The 1-cocyle (gαβ) gives rise to an equivalence RH
relation on (X ′ ×G)/H and E(G/H) has a realisation as (X ′ ×G/H)/RH . Since
both R and RH arise from (gαβ) and the left action of G on X ′×G commutes with
the right action of G, it is not hard to see that the following diagram commutes∐

α Uα ×G
modulo R //

modulo H

��

E

modulo H

��
(
∐
α Uα ×G)/H

(modulo R)/H // E/H

∐
α Uα × (G/H)

modulo RH

// E(G/H)

The net result is that we have E(G/H) = E/H.
There is a more canonical way of seeing this which is perhaps more illustrative.

Let ε ∈ G be the identity element, and ξ0 ∈ G/H the image of ε under the natural
map p : G→ G/H. We have a natural continuous map

$ : E → E(G/H)

given by

e 7→ [e, ξ0].

Note that [e, ξ0] = [e′, ξ0] if and only if there is an element (necessarily unique)
g ∈ G such that (e′, ξ0) = (eg, g−1ξ0). This forces the equation gξ0 = ξ0, i.e.,
g ∈ H. Thus $(e) = $(e′) if and only if they are in the same H-orbit. It follows
that

(2.2.1) E(G/H) = E/H

and under this identification $ : E → E(G/H) is the quotient map E → E/H. Let

t : E/H → X
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denote the resulting fibre bundle with fibre G/H. We then have a commutative
diagram

(2.2.2) E

$

""D
DD

DD
DD

D

π

��

E/H

t

||zz
zz
zz
zz

X

Proposition 2.2.3. Suppose pH : G→ G/H has local sections. The space E is a
principal H-bundle over E(G/H) = E/H.

Proof. Clearly $ : E → E/H is H-equivariant for the trivial H-action on E/H.
Let W = {Wi} be a trivializing cover for the principal H-bundle pH : G → G/H.
Let U = {Uα} be a trivializing cover for the principal G-bundle π : E → X. Then
U is a also a trivializing cover for the fibre-bundle t : E/H → X. It follows that on
t−1(Uα) we can find an open cover V = {Vαi} such that each Vαi is homeomorphic
to Uα×Wi, and $−1(Vαi)→ Vαi is a trivial principal H-bundle. From Problem (12)
of the mid-term, the result follows. �

3. Reduction of structure groups

Let π : E → X be a principal G-bundle and H a closed subgroup of G. Recall
that this principal G-bundle is said to have a reduction of structure group to H if
there is an open cover U = {Uα} and 1-cocycle (hαβ) for E → X with respect to
U such that the hαβ take values in H.

There is another way of viewing this. If H is the sheaf U 7→ {U ψ−→ H |ψ is continuous}
and G the sheaf U 7→ {U ϕ−→ G |ϕ is continuous} then we have a natural map

h∗ : H1(X, H )→ H1(X, G )

for every 1-cocycle with values in H is a 1-cocycle with values in G and if two of
them are H-cohomologous, then they are G-cohomologous. Let ζ ∈ H1(X, G ) be
the element defined by the isomorphism class of E. The structure group of E is
reducible to H is and only if ζ is in the image of h∗. In this case, a specific choice
of an element ξ ∈ H1(X, H ) such that h∗ξ = ζ is a reduction of structure group of
E to H.

Assumption: From now on we assume that the map G → G/H has local
sections.

3.1. Suppose we are given a 1-cocycle (hαβ) for E → X with respect to U such
that the hαβ take values in H. We can construct a principal H-bundle

p : P → H

from our cocycle, and we have a naturalH-equivariant inclusion of a closed subspace
i : P ↪→ E such that π ◦ i = p:

(3.1.1) P

p   A
AA

AA
AA

A
� � i // E

π

��
X



6 LECTURE 17

In fact the natural inclusion
∐
α Uα × H ↪→

∐
α Uα × G is H-equivariant for

the right and left actions, and since P and E are obtained by quotienting by the
same cocycle acting on the left, the right action survives the compatible quotienting
processes and gives i : P ↪→ E.

Conversely, given a commutative diagram as above with i : P → E an H-
equivariant inclusion map, identifying P as a H-stable closed subspace of E, we
can find local sections σα : Uα → p−1(Uα) of p−1(Uα)→ Uα and maps

hαβ : Uαβ → H

satisfying

σβ(u) = σα(u)hαβ(u) (u ∈ Uαβ).

Then (hαβ) is a 1-cocycle. Now i ◦σα = τα (say) give rise to local sections of
π : E → X, and since i is H-equivariant, the corresponding cocycle is precisely
(hαβ). In other words we have a reduction of the structure group G to H.

There is yet another way of seeing that principal H-sub-bundles p : P → X
of π : E → X give a reduction of structure group of E to H. Note that by H-
sub-bundle we mean that p : P → X fits into the diagram (3.1.1) with i : P → E
H-equivariant and an inclusion of a closed subspace. Now H acts on G from the
left by multiplication, and since this action commutes with the right action of G
on G, the resulting associated fibre bundle P (G) has a right G-action on it, and
hence is necessarily a principal G-bundle since it is already locally trivial (using the
trivialisations of P → X). In fact the transition functions for P (G) are the same
as that for P and hence P (G) has a reduction of structure group to H. We shall
show that P (G)→ X and π : E → X are isomorphic as principal G-bundles. That
will show that H-sub-bundles like P give rise to reductions of structure groups. To
that end, let [a, g] ∈ P (G). Recall [a , g] = [a′, g′] if and only if there is an h ∈ H
such that (a′, g′) = (ah, h−1g). Define

P (G)→ E

by

[a, g] 7→ i(a)g.

This is clearly well defined (since i isH-equivariant), G-equivariant, and continuous.
The inverse map is as follows. Let e ∈ E and set x = π(e). Let a ∈ P be any
element in the fibre of x in P . (Note that if a′ ∈ P is another element such that
p(a′) = x then there is a unique h ∈ H such that a′ = ah.) Let g ∈ G be the unique
element such that e = i(a)g. The element [a, g] ∈ P (E) does not depend on the
choice of a in p−1(x), for by the H-equivariance of i, we have e = i(ah)h−1g for
h ∈ H, and [a, g] = [ah, h−1g]. The map

E → P (E)

given by e 7→ [a, g], with a and g as above, is continuous, and gives the required
inverse. Thus

P (G) −→∼ E.
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3.2. A particular reduction of structure group. Diagram (2.2.2) can be ex-
panded to

(3.2.1) t∗E

t̃

||yy
yy
yy
yy
y

π̃

��

E

$

""D
DD

DD
DD

D

π

��

E/H

t

||zz
zz
zz
zz

X

where t∗E is a short-hand for E/H×X E and t̃ and π̃ are the projections. We have
a map

σ̃0 : E → t∗E

given by e 7→ ($(e), e). This is a section, and hence identifies E as a closed
subspace of t∗E. Clearly π̃ ◦ σ̃0 = $. Further, for h ∈ H and e ∈ E

σ̃0(eh) = ($(eh), eh) = ($(e), , eh) = ($(e), e) · h = (σ̃0(e))h.

Thus σ̃0 is H-equivariant. Recall that reductions of structure groups are charac-
terized by diagrams such as (3.1.1). Thus E → E/H is a principal H-sub-bundle
of t∗E, thus giving a reduction of structure group of π̃ : t∗E → E/H to H.

Theorem 3.2.2. Let H be a closed subgroup of G such that the canonical map
pH : G→ G/H has local sections. With notations as above, reductions of structure
group of the principal G-bundle E to H are in bijective correspondence with sections
of the fibre bundle t : E/H → X. Equivalently, such reductions are in bijective
correspondence with G-equivariant continuous maps from E to G/H.

Proof. We will prove in the next lecture that sections of E/H
t−→ X are in bijective

correspondence with G-equivariant maps from E to G/H. In fact we will prove,
more generally, that sections of πF : E(F ) → X are in one-to-one correspondence
with G-equivariant maps ϕ : E → F .

Next, we have a commutative diagram which is formally like (3.1.1) namely

(3.2.3) E

π ""D
DD

DD
DD

D
� � σ̃0 //

$ ""D
DD

DD
DD

D t∗E

π̃
��

E/H

If we have a section σ : X → E/H of t : E/H → X, then σ∗(3.2.3) is a diagram
of the form (3.1.1) with P = σ∗E, i = σ∗σ̃0, etc. Thus we have a reduction of the
structure group for E to H.

Conversely, suppose we have a reduction of structure group of E to H. In other
words we have a commutative diagram as in (3.1.1). Since p : P → X is a principal
H-bundle, we have local sections sα : Uα → p−1(Uα) of p such that U = {Uα}
forms an open cover of X. Let (hαβ) be the corresponding 1-cocycle for the local
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trivialisations of p : P → X given by the sα. Recall that for a pair of indices (α, β),
hαβ : Uαβ → H is the unique map satisfying

sβ(u) = sα(u)hαβ(u) (u ∈ Uαβ).

Let τα = i ◦ sα. Then τα is a local section of E → X over Uα. Moreover, since i is
H-equivariant, we have

τβ(u) = τα(u)hαβ(u) (u ∈ Uαβ).

Let σα = $ ◦ τα : Uα → E/H. Since $(eh) = $(e) for all e ∈ E and h ∈ H, it
follows that

σα |Uαβ = σ
β
|Uαβ

for all α and β. Thus we get a section

σ : X → E/H

of t : E/H → X. �

Remark 3.2.4. If ϕ : E → G/H is G-equivariant, then the corresponding H-sub-
bundle of π : E → X can be obtained directly by setting P = ϕ−1(ξ0) where ξ0 is
the distinguished point of G/H, namely the image of the identity element ε ∈ G
under the natural map G → G/H. Since ϕ is G-equivariant, and since ξ0 is H-
invariant, clearly P is H-stable. It is not hard to see that P → X is in fact a
principal H bundle and the inclusion of P into E is H-equivariant.
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