LECTURE 17

1. E(F) as the quotient of F xg F by an equivalence relation

1.1. As before, let 7: E — X be a G-torsor, and F' — S a locally quasi-affine
G-space, and Fx::= X’ xg F. The last time we stated without proof that E(F')
is realisable as Fx,/Ryp where X' — X is a trivialising fpqc cover of E — X,
0: Gx» == FEx/ a trivialisation, and Ry given by the equivalence relations

(1.1.1) (@] f1) Ro(T) (w3, f2)) <= p(a)) = p(a5) and f1 = go(21, 25) fa-

Let us postpone the (easy) proof to the next lecture. However note that if X' = F
with the trivialising cover X’ — X being E = X, and if the trivialsation @ is given
by the orbit ¥ = 15 map of the diagonal section §: E — E x x E, i.e. the map

Vi (e,9) = (e, eg)
from Gg to E X x E, then the above description shows that
(1.1.2) E(F)=(ExgF)/ ~

where the equivalence relation ~ is given by (e, f) ~ (eg, g~*f) for appropriate e,
f, and g. Indeed for two T-valued point e,e*: T = E, e* = eg for some g € G(T)
if and only if w(e) = w(e*) and in this case g is unique. In fact, p(e) = p(e*) implies
that e* = egy (e, €*) and this defines the unique g such that e* = eg. Thus, we
have the equality

gu(e, eg) =g
where v is the “diagonal trivialisation” on E X x E — F (via the first projection). It
follows that on (E'x g F')(T') we have (e, f) ~ (e*, f*) if and only if e* = eg for some
g € G(T), necessarily unique, and for this g, f = gf*. Thus (e, gf*) ~ (eg, f*),
or, equivalently, (e, f) ~ (eg, g~ f).
1.2. Let m: E — X and F' — S be as above. To lighten notation, write B’ =
Ex: and E” = Ex» and let the respective maps to X’ and X” be n’: B/ —
X' and 7”: B’ — X”. With FF — S as above, we have associated fibre spaces
7p: E(F) - X, 7l E'(F) - X', and 7fo: E"(F) — X”. It is immediate (from
the construction of E(F') via the trivialization ) that E'(F) = X' xx E(F) and
E"(F) = X" xx E(F) and that under these identifications, 7% = X’ xx 7p, and
W}é‘ =X Xx TF =X Xx ’/T};‘. For i = 1,2, let

oF: E"(F) > B'(F)

be the base change of p;: X" — X’ under the map n%: E'(F) — X', and let

¢ E'(F) — E(F)

Date: October 15, 2012.



2 LECTURE 17

be the base change of p: X’ — X by the map 7m: E(F) — X. We then have a
cartesian square

F
a2

E"(F) -2~ B'(F)

| o e

O
EF) —— E(F)

Next, recall we have an isomorphism
917'1 FX’ = E/(F)
of fibre-spaces over X’ with structure group G such that the induced automorphism

Y12:=pi(0F) " op3(0p)
of the X" -schemes F'x is given by

(@, f) = (2", go(2") ).
Fori=1,2, let
ri: B"(F) = Fx/
be the map r; = 9;1 oql” and
s: Fyr — B(F)
the natural map arising from the construction of E(F') (by making Fx, “descend”

from X’ to X along p: X’ — X). Note s = ¢/ ofr. We therefore have a cartesian
diagram

E"(F) —2—~ Fy,

L

Thus E”(F) is an equivalence relation on Fx,. The two cartesian diagrams above
fit into the following expanded commutative diagram, in which we write 8(?) as a
shorthand for the typographically inconvenient symbol p?(6r), for ¢ = 1, 2.

"/)12 FX” —_— FX/
/ 2SN
(F) e E'(F) )
l / qu 5 l F/
1 q
Fy) ——=> E'(F) E(F)
U
Using this, it is not hard to see that if s(zf, f1) = s(z5, f2) for two valued points
(2, f1) and (%, f2) of Fx/ with the same source, (i.e., the two points determine
a unique point of E”(F)) then (a) p(z}) = p(z}) and (b) f1 = go(a), 25)f2. Con-
versely, if (z}, f1) and (2%, f2) (valued points of on Fx, with the same source)

satisfy (a) and (b), then necessarily s(z}, f1) = s(z}, f2). This just means that
E"(F) represents the equivalence the functor Ry, whence Ry is a scheme-theoretic

S
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equivalence relation. Since the map s: Fx: — E(F) is a fpqc, it follows from earlier
discussions that E(F) = Fx:/Ry. We will give details of the proof of Ry = E"(F)
in the next lecture.

2. Principal Bundles and the space E(G/H)

Let us return to the topological situation. So, G is a topological group and all
topological spaces (including G) in this section are Hausdorff, and all actions of G
on topological spaces are continuous.

2.1. The principal bundle G — G/H. Suppose H is a closed subgroup of G.
The space G/H has a natural structure of a topological space, via the quotient
topology induced from G and the natural map pg: G — G/H. This means that
G/H has the coarsest topology which makes py: G — G/H continuous. In even
simpler terms, a subset S C G/H is an open subset if and only if p~1(S) is open in
G, and this defines a topology on G/H. Recall that a continuous map f: V — W
is said to have local sections if each point w € W has an open neighborhood U and
a continuous section of the map f(U) — U induced by restricting f to f1(U).

Lemma 2.1.1. The continuous map py: G — G/H is H-equivariant for the right
action of H on G and the trivial action of H on G/H. Moreover, py: G — G/H
is a principal H-bundle with this right action of H on G, if and only if pg has local
sections.

Proof. Every principal bundle has local sections, for trivialisations are equivalent
to sections. Thus we only have to prove that if py: G — G/H has local sections,
then it is a principal H-bundle. Suppose % = {U,} is a cover of X and for each
index o we have continuous sections o, : U, — pﬁl(Ua) of the map plfIl(Ua) — U,
induced by a. For each a the map

Unp x H 2% p (UL)

given by
(u, h) = oo (u)h

is clearly a bijective map at the level of sets. It is continuous because o, is con-
tinuous and multiplication in G is continuous on G X G. To see the inverse is
continuous, we examine the inverse more closely. If g € p;'(U,), and we write
u = pp(g) then g and o(u) lie on the same fibre of p, namely the coset gH. It
follows that there is a unique h (=h,(g)) in H such that o,(u)h = g. The inverse
map is then g — (pu(9), ha(g)). It is clear that g — h,(g) is a continuous map
from py' (Uy) to H. Indeed h,(g) = (0a(p(g))) "'y, exhibiting h, as a composite
of continuous maps on G. This gives local trivialisations. Since py: G — G/H
is H-equivariant and has local trivialisations, we are done by Problem (12) of your
Mid-Term exam. ]

Remark 2.1.2. It may be instructive to work out the 1-cocyles arising from the
04 in the proof of the lemma. For two indices « and 3, define

hagi Uag —H
by
hap(u) = ga(u) " og(u)
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for u € U,pg. Again, since o, (u) and og(u) lie in the same coset of H (recall, fibres
of p are cosets of H), therefore h,s does indeed take values in H. Moreover, it
is continuous since taking inverses and multiplication are continuous operations.
Obviously (haeg) is a 1-cocycle.

2.2. The space E(G/H) and the space E/H. Let 7: E — X, and H be as
above, and assume py: G — G/H has local sections. Now G acts on G/H and
hence we get the associated fibre bundle w: E(G/H) — X. Clearly if E is the
trivial principal bundle X x G, then E(G/H) = X x (G/H) by construction of
E(F) via 1-cocyles. However, X x (G/H) = (X x G)/H. Thus E(G/H) = E/H
in this case. In the general case, suppose Z = {U,} is an open cover and we have
G-trivialisations
Va: Gu, == 7 HUy) =Uy xx E

giving rise to the 1-cocycle (gqo5). Then
E=]]U. xG)/R

for the equivalence relation R induced by (gap). If X’ =[], Ua, then the principal
G-bundle Ex, — X' is a trivial torsor, and Ex/(G/H) is therefore isomorphic to
"x (G/H) = (X' x G)/H. The 1-cocyle (gap) gives rise to an equivalence Ry
relation on (X’ x G)/H and E(G/H) has a realisation as (X’ x G/H)/Rpy. Since
both R and Ry arise from (ga) and the left action of G on X’ x G commutes with
the right action of G, it is not hard to see that the following diagram commutes

Ha Ua < G modulo R E

modulo H\L lmodulo H
(Ha U, x G)/H (modulo R)/H E/H
[I, Ua x (G/H) E(G/H)

modulo Ry

The net result is that we have E(G/H) = E/H.

There is a more canonical way of seeing this which is perhaps more illustrative.
Let € € G be the identity element, and £ € G/H the image of £ under the natural
map p: G — G/H. We have a natural continuous map

w: E— E(G/H)
given by
= [6, §0]

] if and only if there is an element (necessarily unique)
= (eg, g~'&y). This forces the equation g& = &, i.e.,
) if and only if they are in the same H-orbit. It follows

Note that [e, &] = [ " &
g € G such that( , &0)
g € H. Thus w(e) = w(e
that

(2.2.1) E(G/H)=E/H
and under this identification w: E — E(G/H) is the quotient map F — E/H. Let
t: E/H —» X



LECTURE 17 5

denote the resulting fibre bundle with fibre G/H. We then have a commutative

diagram
\L_i\

(2.2.2) E
™ E/H

v

Proposition 2.2.3. Suppose py: G — G/H has local sections. The space E is a
principal H-bundle over E(G/H) =E/H.

Proof. Clearly w: F — E/H is H-equivariant for the trivial H-action on E/H.
Let # = {W;} be a trivializing cover for the principal H-bundle py: G — G/H.
Let % = {U,} be a trivializing cover for the principal G-bundle 7: E — X. Then
% is a also a trivializing cover for the fibre-bundle t: E/H — X. It follows that on
t=1(U,) we can find an open cover ¥ = {V,;} such that each V,; is homeomorphic
to Uy x Wi, and w™1(V,,;) — Vi is a trivial principal H-bundle. From Problem (12)
of the mid-term, the result follows. O

3. Reduction of structure groups

Let m: E — X be a principal G-bundle and H a closed subgroup of G. Recall
that this principal G-bundle is said to have a reduction of structure group to H if
there is an open cover % = {U,} and 1-cocycle (hag) for E — X with respect to
% such that the hop take values in H.

There is another way of viewing this. If 5 is the sheaf U — {U Y H |1 is continuous}

and ¥ the sheaf U — {U 2 G| ¢ is continuous} then we have a natural map
h.: HY(X, ) — HY(X, 9)

for every 1-cocycle with values in H is a 1-cocycle with values in G and if two of
them are H-cohomologous, then they are G-cohomologous. Let ¢ € HY(X, ¢4) be
the element defined by the isomorphism class of E. The structure group of E is
reducible to H is and only if  is in the image of h,. In this case, a specific choice
of an element ¢ € HY (X, J#) such that h.& = ( is a reduction of structure group of
FE to H.

Assumption: From now on we assume that the map G — G/H has local
sections.

3.1. Suppose we are given a l-cocycle (hqap) for E — X with respect to % such
that the h,p take values in H. We can construct a principal H-bundle

p: P—H
from our cocycle, and we have a natural H-equivariant inclusion of a closed subspace

i: P — FE such that moi = p:
(3.1.1) P t.p
RN
X
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In fact the natural inclusion [, Uy x H — [[,Us x G is H-equivariant for
the right and left actions, and since P and E are obtained by quotienting by the
same cocycle acting on the left, the right action survives the compatible quotienting
processes and gives i: P — FE.

Conversely, given a commutative diagram as above with ¢: P — FE an H-
equivariant inclusion map, identifying P as a H-stable closed subspace of E, we
can find local sections o4: Uy — p~ 1 (Uy,) of p~1(U,) — U, and maps

hagl Uag — H
satisfying
op(u) = oa(uhap(u)  (u € Uap).

Then (hqep) is a l-cocycle. Now io0, = 7, (say) give rise to local sections of
m: F — X, and since ¢ is H-equivariant, the corresponding cocycle is precisely
(hag). In other words we have a reduction of the structure group G to H.

There is yet another way of seeing that principal H-sub-bundles p: P — X
of m: F — X give a reduction of structure group of £ to H. Note that by H-
sub-bundle we mean that p: P — X fits into the diagram (3.1.1) with i: P — E
H-equivariant and an inclusion of a closed subspace. Now H acts on G from the
left by multiplication, and since this action commutes with the right action of G
on G, the resulting associated fibre bundle P(G) has a right G-action on it, and
hence is necessarily a principal G-bundle since it is already locally trivial (using the
trivialisations of P — X). In fact the transition functions for P(G) are the same
as that for P and hence P(G) has a reduction of structure group to H. We shall
show that P(G) — X and m: F — X are isomorphic as principal G-bundles. That
will show that H-sub-bundles like P give rise to reductions of structure groups. To
that end, let [a, g] € P(G). Recall [a,g] = [d/, ¢'] if and only if there is an h € H
such that (a/, g’) = (ah,h™'g). Define

P(G)— E
by
la, g] = i(a)g.

This is clearly well defined (since i is H-equivariant), G-equivariant, and continuous.
The inverse map is as follows. Let e € E and set x = 7(e). Let a € P be any
element in the fibre of z in P. (Note that if «’ € P is another element such that
p(a’) = x then there is a unique h € H such that o’ = ah.) Let g € G be the unique
element such that e = i(a)g. The element [a, g] € P(EF) does not depend on the
choice of a in p~!(z), for by the H-equivariance of i, we have e = i(ah)h~!g for
h € H, and [a, g] = [ah, h~'g]. The map

E — P(E)

given by e — [a, g], with a and g as above, is continuous, and gives the required
inverse. Thus

P(G) = E.
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3.2. A particular reduction of structure group. Diagram (2.2.2) can be ex-
panded to

(3.2.1) t*E

where t*E is a short-hand for E/H x x E and t and 7 are the projections. We have
a map

502 E = t'FE

given by e — (w(e), ). This is a section, and hence identifies E as a closed
subspace of t*E. Clearly mocg = w. Further, for h € H and e € E

oo(eh) = (w(eh), eh) = (w(e), ,eh) = (w(e), ) - h = (go(e))h.

Thus gy is H-equivariant. Recall that reductions of structure groups are charac-
terized by diagrams such as (3.1.1). Thus F — E/H is a principal H-sub-bundle
of t*E, thus giving a reduction of structure group of 7: t*E — E/H to H.

Theorem 3.2.2. Let H be a closed subgroup of G such that the canonical map
pu: G — G/H has local sections. With notations as above, reductions of structure
group of the principal G-bundle E to H are in bijective correspondence with sections
of the fibre bundle t: E/H — X. FEquivalently, such reductions are in bijective
correspondence with G-equivariant continuous maps from E to G/H.

Proof. We will prove in the next lecture that sections of E/H Y X arein bijective
correspondence with G-equivariant maps from F to G/H. In fact we will prove,
more generally, that sections of 7p: E(F) — X are in one-to-one correspondence
with G-equivariant maps ¢: £ — F.

Next, we have a commutative diagram which is formally like (3.1.1) namely

(3.2.3) EC s *E

N

E/H

If we have a section 0: X — E/H of t: E/H — X, then ¢*(3.2.3) is a diagram
of the form (3.1.1) with P = 0*E, i = 0*0¢, etc. Thus we have a reduction of the
structure group for E to H.

Conversely, suppose we have a reduction of structure group of E to H. In other
words we have a commutative diagram as in (3.1.1). Since p: P — X is a principal
H-bundle, we have local sections s,: U, — p~1(Uy) of p such that % = {U,}
forms an open cover of X. Let (hqap) be the corresponding 1-cocycle for the local
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trivialisations of p: P — X given by the s,. Recall that for a pair of indices («, ),
hap: Uag — H is the unique map satisfying

sp(u) = sa(u)has(u)  (u € Uap).
Let 7, = i084. Then 7, is a local section of £ — X over U,. Moreover, since i is
H-equivariant, we have

7(u) = Ta(u)has(u) (u € Uap).
Let 0o = woTq: Uy — E/H. Since w(eh) = w(e) for all e € E and h € H, it
follows that
0 lUas = 0500
for all  and . Thus we get a section

o: X = E/H
oft: E/H — X. O

Remark 3.2.4. If p: E — G/H is G-equivariant, then the corresponding H-sub-
bundle of 7: E — X can be obtained directly by setting P = ¢~ 1(&y) where & is
the distinguished point of G/H, namely the image of the identity element ¢ € G
under the natural map G — G/H. Since @ is G-equivariant, and since &y is H-
invariant, clearly P is H-stable. It is not hard to see that P — X is in fact a
principal H bundle and the inclusion of P into E is H-equivariant.
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