1. E(F) as the quotient of $E \times_S F$ by an equivalence relation

1.1. As before, let $\pi: E \to X$ be a *G*-torsor, and $F \to S$ a locally quasi-affine *G*-space, and $F_{X'} := X' \times_S F$. The last time we stated without proof that E(F) is realisable as $F_{X'}/R_{\theta}$ where $X' \to X$ is a trivialising fpqc cover of $E \to X$, $\theta: G_{X'} \xrightarrow{\sim} E_{X'}$ a trivialisation, and R_{θ} given by the equivalence relations

(1.1.1)
$$((x'_{,f_1}) R_{\theta}(T) (x'_{2}, f_2)) \iff p(x'_{1}) = p(x'_{2}) \text{ and } f_1 = g_{\theta}(x'_{1}, x'_{2}) f_2.$$

Let us postpone the (easy) proof to the next lecture. However note that if X' = Ewith the trivialising cover $X' \to X$ being $E \xrightarrow{\pi} X$, and if the trivialisation θ is given by the orbit $\psi = \psi_{\delta}$ map of the diagonal section $\delta \colon E \to E \times_X E$, i.e. the map

$$\psi \colon (e,g) \mapsto (e,eg)$$

from G_E to $E \times_X E$, then the above description shows that

$$(1.1.2) E(F) = (E \times_S F) / \sim$$

where the equivalence relation \sim is given by $(e, f) \sim (eg, g^{-1}f)$ for appropriate e, f, and g. Indeed for two T-valued point $e, e^* \colon T \rightrightarrows E$, $e^* = eg$ for some $g \in G(T)$ if and only if $\pi(e) = \pi(e^*)$ and in this case g is unique. In fact, $p(e) = p(e^*)$ implies that $e^* = eg_{\psi}(e, e^*)$ and this defines the unique g such that $e^* = eg$. Thus, we have the equality

 $g_{\psi}(e, eg) = g$

where ψ is the "diagonal trivialisation" on $E \times_X E \to E$ (via the first projection). It follows that on $(E \times_S F)(T)$ we have $(e, f) \sim (e^*, f^*)$ if and only if $e^* = eg$ for some $g \in G(T)$, necessarily unique, and for this $g, f = gf^*$. Thus $(e, gf^*) \sim (eg, f^*)$, or, equivalently, $(e, f) \sim (eg, g^{-1}f)$.

1.2. Let $\pi: E \to X$ and $F \to S$ be as above. To lighten notation, write $E' = E_{X'}$ and $E'' = E_{X''}$ and let the respective maps to X' and X'' be $\pi': E' \to X'$ and $\pi'': E'' \to X''$. With $F \to S$ as above, we have associated fibre spaces $\pi_F: E(F) \to X, \pi'_F: E'(F) \to X'$, and $\pi''_F: E''(F) \to X''$. It is immediate (from the construction of E(F) via the trivialization θ) that $E'(F) = X' \times_X E(F)$ and $E''(F) = X'' \times_X E(F)$ and that under these identifications, $\pi'_F = X' \times_X \pi_F$, and $\pi''_F = X'' \times_X \pi_F = X'' \times_{X'} \pi'_F$. For i = 1, 2, let

$$q_i^F \colon E''(F) \to E'(F)$$

be the base change of $p_i \colon X'' \to X'$ under the map $\pi'_F \colon E'(F) \to X'$, and let

$$q^F \colon E'(F) \to E(F)$$

Date: October 15, 2012.

be the base change of $p: X' \to X$ by the map $\pi: E(F) \to X$. We then have a cartesian square

$$\begin{array}{c} E''(F) \xrightarrow{q_2^{F}} E'(F) \\ \\ q_1^{F} \\ \\ p_1^{F} \\ \\ \\ E'(F) \xrightarrow{q_F} E(F) \end{array}$$

Next, recall we have an isomorphism

$$\theta_F \colon F_{X'} \xrightarrow{\sim} E'(F)$$

of fibre-spaces over X' with structure group G such that the induced automorphism

$$\psi_{12} := p_1^*(\theta_F)^{-1} \circ p_2^*(\theta_F)$$

of the X''-schemes $F_{X''}$ is given by

$$(x'', f) \mapsto (x'', g_{\theta}(x'')f).$$

 $r_i \colon E''(F) \to F_{X'}$

For i = 1, 2, let

be the map
$$r_i = \theta_F^{-1} \circ q_i^F$$
 and

$$s \colon F_{X'} \to E(F)$$

the natural map arising from the construction of E(F) (by making $F_{X'}$ "descend" from X' to X along $p: X' \to X$). Note $s = q^F \circ \theta_F$. We therefore have a cartesian diagram

$$\begin{array}{cccc}
E''(F) & \xrightarrow{r_2} & F_{X'} \\
& & & \\
r_1 & & & & \\
r_1 & & & & \\
F_{X'} & \xrightarrow{s} & E(F)
\end{array}$$

Thus E''(F) is an equivalence relation on $F_{X'}$. The two cartesian diagrams above fit into the following expanded commutative diagram, in which we write $\theta^{(i)}$ as a shorthand for the typographically inconvenient symbol $p_i^*(\theta_F)$, for i = 1, 2.

Using this, it is not hard to see that if $s(x'_1, f_1) = s(x'_2, f_2)$ for two valued points (x'_1, f_1) and (x'_2, f_2) of $F_{X'}$ with the same source, (i.e., the two points determine a unique point of E''(F)) then (a) $p(x'_1) = p(x'_2)$ and (b) $f_1 = g_{\theta}(x'_1, x'_2)f_2$. Conversely, if (x'_1, f_1) and (x'_2, f_2) (valued points of on $F_{X'}$ with the same source) satisfy (a) and (b), then necessarily $s(x'_1, f_1) = s(x'_2, f_2)$. This just means that E''(F) represents the equivalence the functor R_{θ} , whence R_{θ} is a scheme-theoretic

equivalence relation. Since the map $s \colon F_{X'} \to E(F)$ is a fpqc, it follows from earlier discussions that $E(F) = F_{X'}/R_{\theta}$. We will give details of the proof of $R_{\theta} = E''(F)$ in the next lecture.

2. Principal Bundles and the space E(G/H)

Let us return to the topological situation. So, G is a topological group and all topological spaces (including G) in this section are Hausdorff, and all actions of G on topological spaces are continuous.

2.1. The principal bundle $G \to G/H$. Suppose H is a closed subgroup of G. The space G/H has a natural structure of a topological space, via the quotient topology induced from G and the natural map $p_H: G \to G/H$. This means that G/H has the coarsest topology which makes $p_H: G \to G/H$ continuous. In even simpler terms, a subset $S \subset G/H$ is an open subset if and only if $p^{-1}(S)$ is open in G, and this defines a topology on G/H. Recall that a continuous map $f: V \to W$ is said to have *local sections* if each point $w \in W$ has an open neighborhood U and a continuous section of the map $f^{(U)} \to U$ induced by restricting f to $f^{1}(U)$.

Lemma 2.1.1. The continuous map $p_H: G \to G/H$ is H-equivariant for the right action of H on G and the trivial action of H on G/H. Moreover, $p_H: G \to G/H$ is a principal H-bundle with this right action of H on G, if and only if p_H has local sections.

Proof. Every principal bundle has local sections, for trivialisations are equivalent to sections. Thus we only have to prove that if $p_H: G \to G/H$ has local sections, then it is a principal *H*-bundle. Suppose $\mathscr{U} = \{U_\alpha\}$ is a cover of *X* and for each index α we have continuous sections $\sigma_\alpha: U_\alpha \to p_H^{-1}(U_\alpha)$ of the map $p_H^{-1}(U_\alpha) \to U_\alpha$ induced by α . For each α the map

$$U_{\alpha} \times H \xrightarrow{\varphi_{\alpha}} p_H^{-1}(U_{\alpha})$$

given by

$$(u, h) \mapsto \sigma_{\alpha}(u)h$$

is clearly a bijective map at the level of sets. It is continuous because σ_{α} is continuous and multiplication in G is continuous on $G \times G$. To see the inverse is continuous, we examine the inverse more closely. If $g \in p_H^{-1}(U_{\alpha})$, and we write $u = p_H(g)$ then g and $\sigma(u)$ lie on the same fibre of p, namely the coset gH. It follows that there is a unique $h (=h_{\alpha}(g))$ in H such that $\sigma_{\alpha}(u)h = g$. The inverse map is then $g \mapsto (p_H(g), h_{\alpha}(g))$. It is clear that $g \mapsto h_{\alpha}(g)$ is a continuous map from $p_H^{-1}(U_{\alpha})$ to H. Indeed $h_{\alpha}(g) = (\sigma_{\alpha}(p(g)))^{-1}g$, exhibiting h_{α} as a composite of continuous maps on G. This gives local trivialisations. Since $p_H: G \to G/H$ is H-equivariant and has local trivialisations, we are done by Problem (12) of your Mid-Term exam.

Remark 2.1.2. It may be instructive to work out the 1-cocyles arising from the σ_{α} in the proof of the lemma. For two indices α and β , define

$$h_{\alpha\beta} \colon U_{\alpha\beta} \to H$$

by

$$h_{\alpha\beta}(u) = \sigma_{\alpha}(u)^{-1}\sigma_{\beta}(u)$$

for $u \in U_{\alpha\beta}$. Again, since $\sigma_{\alpha}(u)$ and $\sigma_{\beta}(u)$ lie in the same coset of H (recall, fibres of p are cosets of H), therefore $h_{\alpha\beta}$ does indeed take values in H. Moreover, it is continuous since taking inverses and multiplication are continuous operations. Obviously $(h_{\alpha\beta})$ is a 1-cocycle.

2.2. The space E(G/H) and the space E/H. Let $\pi: E \to X$, and H be as above, and assume $p_H: G \to G/H$ has local sections. Now G acts on G/H and hence we get the associated fibre bundle $\varpi: E(G/H) \to X$. Clearly if E is the trivial principal bundle $X \times G$, then $E(G/H) = X \times (G/H)$ by construction of E(F) via 1-cocyles. However, $X \times (G/H) = (X \times G)/H$. Thus E(G/H) = E/H in this case. In the general case, suppose $\mathscr{U} = \{U_{\alpha}\}$ is an open cover and we have G-trivialisations

$$\varphi_{\alpha} \colon G_{U_{\alpha}} \xrightarrow{\sim} \pi^{-1}(U_{\alpha}) = U_{\alpha} \times_X E$$

giving rise to the 1-cocycle $(g_{\alpha\beta})$. Then

$$E = \coprod_{\alpha} (U_{\alpha} \times G)/R$$

for the equivalence relation R induced by $(g_{\alpha\beta})$. If $X' = \coprod_{\alpha} U_{\alpha}$, then the principal G-bundle $E_{X'} \to X'$ is a trivial torsor, and $E_{X'}(G/H)$ is therefore isomorphic to $X' \times (G/H) = (X' \times G)/H$. The 1-cocyle $(g_{\alpha\beta})$ gives rise to an equivalence R_H relation on $(X' \times G)/H$ and E(G/H) has a realisation as $(X' \times G/H)/R_H$. Since both R and R_H arise from $(g_{\alpha\beta})$ and the left action of G on $X' \times G$ commutes with the right action of G, it is not hard to see that the following diagram commutes

$$\begin{split} & \coprod_{\alpha} U_{\alpha} \times G \xrightarrow{\text{modulo } R} E \\ & \text{modulo } H \\ & \bigvee_{\mu} V_{\alpha} \times G) / H \xrightarrow{(\text{modulo } R) / H} E / H \\ & \parallel & \parallel \\ & \coprod_{\alpha} U_{\alpha} \times (G / H) \xrightarrow{(\text{modulo } R_{H})} E (G / H) \end{split}$$

The net result is that we have E(G/H) = E/H.

There is a more canonical way of seeing this which is perhaps more illustrative. Let $\varepsilon \in G$ be the identity element, and $\xi_0 \in G/H$ the image of ε under the natural map $p: G \to G/H$. We have a natural continuous map

$$\varpi \colon E \to E(G/H)$$

given by

$$e \mapsto [e, \xi_0]$$

Note that $[e, \xi_0] = [e', \xi_0]$ if and only if there is an element (necessarily unique) $g \in G$ such that $(e', \xi_0) = (eg, g^{-1}\xi_0)$. This forces the equation $g\xi_0 = \xi_0$, i.e., $g \in H$. Thus $\varpi(e) = \varpi(e')$ if and only if they are in the same *H*-orbit. It follows that

$$(2.2.1) E(G/H) = E/H$$

and under this identification $\varpi \colon E \to E(G/H)$ is the quotient map $E \to E/H$. Let

$$t: E/H \to X$$

denote the resulting fibre bundle with fibre G/H. We then have a commutative diagram

(2.2.2)

Proposition 2.2.3. Suppose $p_H: G \to G/H$ has local sections. The space E is a principal H-bundle over E(G/H) = E/H.

Proof. Clearly $\varpi: E \to E/H$ is *H*-equivariant for the trivial *H*-action on E/H. Let $\mathscr{W} = \{W_i\}$ be a trivializing cover for the principal *H*-bundle $p_H: G \to G/H$. Let $\mathscr{U} = \{U_\alpha\}$ be a trivializing cover for the principal *G*-bundle $\pi: E \to X$. Then \mathscr{U} is a also a trivializing cover for the fibre-bundle $t: E/H \to X$. It follows that on $t^{-1}(U_\alpha)$ we can find an open cover $\mathscr{V} = \{V_{\alpha i}\}$ such that each $V_{\alpha i}$ is homeomorphic to $U_\alpha \times W_i$, and $\varpi^{-1}(V_{\alpha i}) \to V_{\alpha i}$ is a trivial principal *H*-bundle. From Problem (12) of the mid-term, the result follows.

3. Reduction of structure groups

Let $\pi: E \to X$ be a principal *G*-bundle and *H* a closed subgroup of *G*. Recall that this principal *G*-bundle is said to have a reduction of structure group to *H* if there is an open cover $\mathscr{U} = \{U_{\alpha}\}$ and 1-cocycle $(h_{\alpha\beta})$ for $E \to X$ with respect to \mathscr{U} such that the $h_{\alpha\beta}$ take values in *H*.

There is another way of viewing this. If \mathscr{H} is the sheaf $U \mapsto \{U \xrightarrow{\psi} H \mid \psi \text{ is continuous}\}$ and \mathscr{G} the sheaf $U \mapsto \{U \xrightarrow{\varphi} G \mid \varphi \text{ is continuous}\}$ then we have a natural map

$$h_* \colon \mathrm{H}^1(X, \mathscr{H}) \to \mathrm{H}^1(X, \mathscr{G})$$

for every 1-cocycle with values in H is a 1-cocycle with values in G and if two of them are H-cohomologous, then they are G-cohomologous. Let $\zeta \in H^1(X, \mathscr{G})$ be the element defined by the isomorphism class of E. The structure group of E is *reducible to* H is and only if ζ is in the image of h_* . In this case, a specific choice of an element $\xi \in H^1(X, \mathscr{H})$ such that $h_*\xi = \zeta$ is a *reduction of structure group of* E to H.

Assumption: From now on we assume that the map $G \to G/H$ has local sections.

3.1. Suppose we are given a 1-cocycle $(h_{\alpha\beta})$ for $E \to X$ with respect to \mathscr{U} such that the $h_{\alpha\beta}$ take values in H. We can construct a principal H-bundle

 $p\colon P\to H$

from our cocycle, and we have a natural *H*-equivariant inclusion of a closed subspace $i: P \hookrightarrow E$ such that $\pi \circ i = p$:

 $P \xrightarrow{i} E$ $p \xrightarrow{i} \chi$ $p \xrightarrow{i} \chi$

In fact the natural inclusion $\coprod_{\alpha} U_{\alpha} \times H \hookrightarrow \coprod_{\alpha} U_{\alpha} \times G$ is *H*-equivariant for the right and left actions, and since *P* and *E* are obtained by quotienting by the same cocycle acting on the left, the right action survives the compatible quotienting processes and gives $i: P \hookrightarrow E$.

Conversely, given a commutative diagram as above with $i: P \to E$ an *H*-equivariant inclusion map, identifying *P* as a *H*-stable closed subspace of *E*, we can find local sections $\sigma_{\alpha}: U_{\alpha} \to p^{-1}(U_{\alpha})$ of $p^{-1}(U_{\alpha}) \to U_{\alpha}$ and maps

$$h_{\alpha\beta}\colon U_{\alpha\beta}\to H$$

satisfying

$$\sigma_{\beta}(u) = \sigma_{\alpha}(u)h_{\alpha\beta}(u) \qquad (u \in U_{\alpha\beta}).$$

Then $(h_{\alpha\beta})$ is a 1-cocycle. Now $i \circ \sigma_{\alpha} = \tau_{\alpha}$ (say) give rise to local sections of $\pi: E \to X$, and since *i* is *H*-equivariant, the corresponding cocycle is precisely $(h_{\alpha\beta})$. In other words we have a reduction of the structure group *G* to *H*.

There is yet another way of seeing that principal H-sub-bundles $p: P \to X$ of $\pi: E \to X$ give a reduction of structure group of E to H. Note that by Hsub-bundle we mean that $p: P \to X$ fits into the diagram (3.1.1) with $i: P \to E$ H-equivariant and an inclusion of a closed subspace. Now H acts on G from the left by multiplication, and since this action commutes with the right action of Gon G, the resulting associated fibre bundle P(G) has a right G-action on it, and hence is necessarily a principal G-bundle since it is already locally trivial (using the trivialisations of $P \to X$). In fact the transition functions for P(G) are the same as that for P and hence P(G) has a reduction of structure group to H. We shall show that $P(G) \to X$ and $\pi: E \to X$ are isomorphic as principal G-bundles. That will show that H-sub-bundles like P give rise to reductions of structure groups. To that end, let $[a, g] \in P(G)$. Recall [a, g] = [a', g'] if and only if there is an $h \in H$ such that $(a', g') = (ah, h^{-1}g)$. Define

$$P(G) \to E$$

by

$$[a, g] \mapsto i(a)g.$$

This is clearly well defined (since i is H-equivariant), G-equivariant, and continuous. The inverse map is as follows. Let $e \in E$ and set $x = \pi(e)$. Let $a \in P$ be any element in the fibre of x in P. (Note that if $a' \in P$ is another element such that p(a') = x then there is a unique $h \in H$ such that a' = ah.) Let $g \in G$ be the unique element such that e = i(a)g. The element $[a, g] \in P(E)$ does not depend on the choice of a in $p^{-1}(x)$, for by the H-equivariance of i, we have $e = i(ah)h^{-1}g$ for $h \in H$, and $[a, g] = [ah, h^{-1}g]$. The map

$$E \to P(E)$$

given by $e \mapsto [a, g]$, with a and g as above, is continuous, and gives the required inverse. Thus

$$P(G) \xrightarrow{\sim} E.$$

3.2. A particular reduction of structure group. Diagram (2.2.2) can be expanded to

(3.2.1)

where t^*E is a short-hand for $E/H \times_X E$ and \tilde{t} and $\tilde{\pi}$ are the projections. We have a map

$$\widetilde{\sigma}_0 \colon E \to t^* E$$

given by $e \mapsto (\varpi(e), e)$. This is a section, and hence identifies E as a closed subspace of t^*E . Clearly $\tilde{\pi} \circ \tilde{\sigma}_0 = \varpi$. Further, for $h \in H$ and $e \in E$

$$\widetilde{\sigma}_0(eh) = (\varpi(eh), eh) = (\varpi(e), , eh) = (\varpi(e), e) \cdot h = (\widetilde{\sigma}_0(e))h.$$

Thus $\tilde{\sigma}_0$ is *H*-equivariant. Recall that reductions of structure groups are characterized by diagrams such as (3.1.1). Thus $E \to E/H$ is a principal *H*-sub-bundle of t^*E , thus giving a reduction of structure group of $\tilde{\pi}: t^*E \to E/H$ to *H*.

Theorem 3.2.2. Let H be a closed subgroup of G such that the canonical map $p_H: G \to G/H$ has local sections. With notations as above, reductions of structure group of the principal G-bundle E to H are in bijective correspondence with sections of the fibre bundle $t: E/H \to X$. Equivalently, such reductions are in bijective correspondence with G-equivariant continuous maps from E to G/H.

Proof. We will prove in the next lecture that sections of $E/H \xrightarrow{t} X$ are in bijective correspondence with *G*-equivariant maps from *E* to G/H. In fact we will prove, more generally, that sections of $\pi_F \colon E(F) \to X$ are in one-to-one correspondence with *G*-equivariant maps $\varphi \colon E \to F$.

Next, we have a commutative diagram which is formally like (3.1.1) namely

If we have a section $\sigma: X \to E/H$ of $t: E/H \to X$, then $\sigma^*(3.2.3)$ is a diagram of the form (3.1.1) with $P = \sigma^* E$, $i = \sigma^* \tilde{\sigma}_0$, etc. Thus we have a reduction of the structure group for E to H.

Conversely, suppose we have a reduction of structure group of E to H. In other words we have a commutative diagram as in (3.1.1). Since $p: P \to X$ is a principal H-bundle, we have local sections $s_{\alpha}: U_{\alpha} \to p^{-1}(U_{\alpha})$ of p such that $\mathscr{U} = \{U_{\alpha}\}$ forms an open cover of X. Let $(h_{\alpha\beta})$ be the corresponding 1-cocycle for the local trivialisations of $p: P \to X$ given by the s_{α} . Recall that for a pair of indices (α, β) , $h_{\alpha\beta}: U_{\alpha\beta} \to H$ is the unique map satisfying

$$s_{\beta}(u) = s_{\alpha}(u)h_{\alpha\beta}(u) \qquad (u \in U_{\alpha\beta}).$$

Let $\tau_{\alpha} = i \circ s_{\alpha}$. Then τ_{α} is a local section of $E \to X$ over U_{α} . Moreover, since *i* is *H*-equivariant, we have

$$\tau_{\beta}(u) = \tau_{\alpha}(u)h_{\alpha\beta}(u) \qquad (u \in U_{\alpha\beta}).$$

Let $\sigma_{\alpha} = \varpi \circ \tau_{\alpha} \colon U_{\alpha} \to E/H$. Since $\varpi(eh) = \varpi(e)$ for all $e \in E$ and $h \in H$, it follows that

$$\sigma_{\alpha}|_{U_{\alpha\beta}} = \sigma_{\beta}|_{U_{\alpha\beta}}$$

for all α and β . Thus we get a section

$$\sigma: X \to E/H$$

of $t: E/H \to X$.

Remark 3.2.4. If $\varphi: E \to G/H$ is *G*-equivariant, then the corresponding *H*-subbundle of $\pi: E \to X$ can be obtained directly by setting $P = \varphi^{-1}(\xi_0)$ where ξ_0 is the distinguished point of G/H, namely the image of the identity element $\varepsilon \in G$ under the natural map $G \to G/H$. Since φ is *G*-equivariant, and since ξ_0 is *H*invariant, clearly *P* is *H*-stable. It is not hard to see that $P \to X$ is in fact a principal *H* bundle and the inclusion of *P* into *E* is *H*-equivariant.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no[°] 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [EGA I] _____, Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
- [EGA II] _____, Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
- [EGA III₁] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
- [EGA III₂] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
- [EGA IV₁] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
- [EGA IV₂] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
- [EGA IV₃] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
- [EGA IV₄] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
- [SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.