
LECTURE 16

1. Equivalence relations

1.1. Equivalence relations and co-equalizers. The notion of an equivalence
relation on a set has the following natural generalization in the category Sch/S .

Definition 1.1.1. Let X ∈ Sch/S . A schematic equivalence relation on X over S
is an object R ∈ Sch/S together with a morphism f : R → X ×S X such that for
every T ∈ Sch/S the map of sets

f(T ) : R(T )→ X(T )×X(T )

is injective and its image is (the graph of) an equivalence relation on the set X(T ).
Here, for any Z ∈ Sch/S , in keeping with our identification of Z with the functor
hZ , the set Z(T ) denotes the set hZ(T ) := HomSch/S

(T, Z) for any T ∈ Sch/S .

For example, the scheme T ′′ in (1.2.1) is a schematic equivalence relation on T ′

over S, or more precisely, the natural map T ′′ → T ×S T , is a schematic equivalence
relation on T ′ over S. We will see—from the definition we give below of quotients
by equivalence relations—that p : T ′ → T is the scheme theoretic quotient of T ′

with respect to this equivalence relation.

Definition 1.1.2. Let f : R : X be an equivalence relation on X ∈ Sch/S and
f1, f2 : R⇒ X the natural maps arising from f and the projections X ×S X ⇒ X.
A morphism q : X → Q in Sch/S s a quotient for R → X (or simply of X by R) if
q ◦f1 = q ◦f2 and given any map g : X → Z in Sch/S satisfying g ◦f1 = g ◦f2 there
is a unique map h : Q→ Z such that g = h ◦ q, in other words, as in (1.2.1), if—in
the diagram below—the solid arrows form a commutative diagram, then the dotted
arrow can be filled in a unique way to make the whole diagram commute:

(1.1.2.1) R
f
2 //

f
1

��

X

q

�� g

��

X
q //

g
--

Q
h

&&
Z

If the quotient q : X → Q of X by R exists, then we say it is an effective quotient
if the natural map (f1, f2) : R → X ×Q R is an isomorphism, i.e., if the square
in Diagram (1.1.2.1) is cartesian. We often denote the quotient Q, if it exists, by
X/R.

Remark 1.1.3. Clearly, from the universal property of quotients by (schematic)
equivalence relations, if such a quotient q : X → Q exists, it is unique up to unique
isomorphism. In category theory terms, the universal property of q : X → Q makes
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it a co-equalizer for the maps f1 and f2. Co-equalizers are clearly unique up to
unique isomorphisms.

1.2. Example. We have seen that every S-scheme X is an fpqc-sheaf on Sch/S .
Recall that this means the following: Suppose p : T ′ → T is an fpqc-map and as
usual we set T ′′ := T ′ ×S T ′, and let p1, p2 : T ′′ ⇒ T ′ denote the two projections.
Suppose we have a map f ′ : T ′ → X in Sch/S such that f ′ ◦p1 = f ′ ◦p2. Then
there is a unique map f : T → X such that f ′ = f ◦p. In other words if we
have a commutative diagram below of solid arrows in Sch/S (with the square being
cartesian) then the dotted arrow can be filled in a unique way to make the whole
diagram commutative.

(1.2.1) T ′′
p2 //

p
1

��

T ′

p

�� f ′

��

T ′
p //

f ′
--

T f

&&
X

Here our attention is on X and the cartesian diagram of T ’s is allowed to vary.
If we transfer our attention to the commutative square (fixing it) and allow X to
vary in Sch/S then clearly p : T ′ → T is the quotient of T ′ by the scheme theoretic
equivalence relation T ′′. Moreover, since the square in Definition 1.2.1 is cartesian,
T is an effective quotient. We may write T = T ′/T ′′.

In a rough way, one might say that the equivalence relation on T ′ represented
by the scheme T ′′ is the relation that two points of T ′ are related if and only if
they lie on the same fibre of p, i.e., if and only if their image in T is the same. If
we decide to denote the equivalence relation by ∼ rather than T ′′, then in terms of
valued points, say t′1, t

′
2 ∈ T ′(W ), we have t1 ∼ t2 if and only if p(t1) = p(t2), where

of course, as is standard in this course p(t′i) = p ◦ t′i, i = 1, 2. This last description
is rigorous as a little thought will show, since it characterizes T ′′.

We often use the looser notation x1 ∼ x2 to indicate a scheme-theoretic equiv-
alence relation on a scheme, rather than a scheme R and a map R → X. Here
of course, x1 and x2 are valued points of X. In other words x1 ∼ x2 is really a
short hand for a family of set-theoretic equivalence relations, one on each X(T ) as
T varies over Sch/S , in such a way that they are compatible with pull backs via
maps T ′ → T . Thus the symbol x1 ∼ x2 will be a short hand for a family of subsets
R(T ) of X(T ) ×X(T ), such that R is functorial. Usually the functorial property
will be evident. The underlying assumption will be that R is a representable func-
tor. Thus is E → X is a G torsor and F → S a G-locally quasi-affine space over
S, then on E ×S F one sometimes writes (eg, f) ∼ (e, gf) to indicate a scheme
theoretic equivalence relation on E ×S F , with e, g, and f valued points of E, G
and F respectively with the same source. It is clear that this defines a functor R on
Sch/S . It is however not clear that it is representable, or that the quotient exists.
It turns out that indeed R is representable and the quotient E ×S F/ ∼ exists. In
fact the quotient is E(F ) as we will see in the next lecture.
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2. Realisation of E(F ) as a quotient modulo an equivalence relation

2.1. Cartesian cube. Suppose p : X ′ → X is an fpqc map such that π′ : E′ → X ′

is trivial. Let

θ : GX′ −→∼ E′

be the trivialisation. Then, clearly, we have the identifications E′(F ) = p∗E(F ),
and E′′(F ) = p∗

1
E′(F ) = p∗

2
E′(F ). In fact we have a commutative cartesian cube

(2.1.1) E′(F )

π′
F

��

qF // E(F )

πF

��

E′′(F )

qF
2

::uuuuuuuuu qF
1 //

π′′
F

��

E′(F )

qF
;;vvvvvvvvv

π′
F

��

X ′
p // X

X ′′

p2

99tttttttttt p
1 // X ′

p

::uuuuuuuuuu

with qF and qFi being the natural projections. From this the following result can
essentially be read off:

Proposition 2.1.2. The maps qF : E′(F ) → E(F ) and qFi : E′′(F ) → E′(F ),
i = 1, 2 are fpqc maps.

Proof. The maps p : X ′ → X and pi : X
′′ → X are fpqc. The result follows, since

(2.1.1) is a cartesian cube. �
The top face of the cube is:

E′′(F )

�qF1
��

qF2 // E′(F )

qF

��
E′(F )

qF
// E(F )

Now the trivialisation θ : GX′ −→∼ E′ gives us the isomorphism

θF : FX′ −→∼ E′(F ).

Let

ri = θ−1F ◦ qFi (i = 1, 2).

We then have a cartesian square

(2.1.3) E′′(F )

�r1

��

r2 // FX′

��
FX′ // E(F )

Since all arrows are fpqc, and the square is cartesian, from our earlier observations,
E(F ) is the quotient of FX′ by the scheme-theoretic equivalence relation E′′(F ).
In fact E(F ) is an effective quotient. One can bring the equivalence relation E′′(F )
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down to set theoretic terms in a very understandable way, namely using ∼ as a
short hand for the equivalence relation. We have:

(x′1, f1) ∼ (x′2, f2)⇐⇒ p(x′1) = p(x′2) and f1 = gθ(x
′
1, x

′
2)f2.

We will show this in the next lecture. Moreover, ifX ′ → X is the map π : E → X,
the above will imply that E(F ) is the quotient of E×SF by the equivalence relation
given by

(eg, f) ∼ (e, gf)

for e ∈ E(T ), g ∈ G(T ), f ∈ F (T ), and T ∈ Sch/S . This is in line with the classical
construction of the associated fibre space from a principal bundle.
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