LECTURE 16

1. Equivalence relations

1.1. Equivalence relations and co-equalizers. The notion of an equivalence
relation on a set has the following natural generalization in the category Schg.

Definition 1.1.1. Let X € Sch,g. A schematic equivalence relation on X over S
is an object R € Sch,g together with a morphism f: R — X xg X such that for
every T' € Sch /g the map of sets

f(): R(T) = X(T) x X(T)

is injective and its image is (the graph of) an equivalence relation on the set X (7).
Here, for any Z € Sch,g, in keeping with our identification of Z with the functor
hz, the set Z(T) denotes the set hz(T'):= Homsen (T, Z) for any T' € Sch .

For example, the scheme T" in (1.2.1) is a schematic equivalence relation on T”
over S, or more precisely, the natural map T — T x g T, is a schematic equivalence
relation on T” over S. We will see—from the definition we give below of quotients
by equivalence relations—that p: 7" — T is the scheme theoretic quotient of T”
with respect to this equivalence relation.

Definition 1.1.2. Let f: R: X be an equivalence relation on X € Sch,g and
f1, fo: R = X the natural maps arising from f and the projections X xg X = X.
A morphism ¢: X — @ in Sch/g s a quotient for R — X (or simply of X by R) if
qo f1 = qo f2 and given any map g: X — Z in Sch,g satisfying go f1 = go fo there
is a unique map h: @ — Z such that g = hog, in other words, as in (1.2.1), if—in
the diagram below—the solid arrows form a commutative diagram, then the dotted
arrow can be filled in a unique way to make the whole diagram commute:

(1.1.2.1) R x
T

X1-qQ

If the quotient ¢: X — @ of X by R exists, then we say it is an effective quotient
if the natural map (fi, f2): R = X x¢g R is an isomorphism, i.e., if the square
in Diagram (1.1.2.1) is cartesian. We often denote the quotient @, if it exists, by
X/R.

Remark 1.1.3. Clearly, from the universal property of quotients by (schematic)
equivalence relations, if such a quotient ¢: X — @Q exists, it is unique up to unique
isomorphism. In category theory terms, the universal property of g: X — @ makes
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it a co-equalizer for the maps f; and f;. Co-equalizers are clearly unique up to
unique isomorphisms.

1.2. Example. We have seen that every S-scheme X is an fpqc-sheaf on Schg.
Recall that this means the following: Suppose p: 7" — T is an fpqc-map and as
usual we set T := T’ xg T’, and let p1,pa: T” = T’ denote the two projections.
Suppose we have a map f': T — X in Sch/g such that f'op; = f’eps;. Then
there is a unique map f: T — X such that f/ = fop. In other words if we
have a commutative diagram below of solid arrows in Sch /g (with the square being
cartesian) then the dotted arrow can be filled in a unique way to make the whole
diagram commutative.

Py

(1.2.1) T T

3N

TI

Here our attention is on X and the cartesian diagram of 7”s is allowed to vary.
If we transfer our attention to the commutative square (fixing it) and allow X to
vary in Sch,g then clearly p: 7" — T is the quotient of 7" by the scheme theoretic
equivalence relation T". Moreover, since the square in Definition 1.2.1 is cartesian,
T is an effective quotient. We may write T =T"/T".

In a rough way, one might say that the equivalence relation on T’ represented
by the scheme T" is the relation that two points of 7" are related if and only if
they lie on the same fibre of p, i.e., if and only if their image in T is the same. If
we decide to denote the equivalence relation by ~ rather than 7", then in terms of
valued points, say t7,t5 € T'(W), we have t; ~ t5 if and only if p(t1) = p(t2), where
of course, as is standard in this course p(t;) = pot,, i = 1,2. This last description
is rigorous as a little thought will show, since it characterizes T".

We often use the looser notation x; ~ x5 to indicate a scheme-theoretic equiv-
alence relation on a scheme, rather than a scheme R and a map R — X. Here
of course, r1 and x4 are valued points of X. In other words x; ~ x5 is really a
short hand for a family of set-theoretic equivalence relations, one on each X (7T') as
T varies over Sch/g, in such a way that they are compatible with pull backs via
maps 1" — T. Thus the symbol x1 ~ x5 will be a short hand for a family of subsets
R(T) of X(T) x X(T), such that R is functorial. Usually the functorial property
will be evident. The underlying assumption will be that R is a representable func-
tor. Thus is £ — X is a G torsor and F' — S a G-locally quasi-affine space over
S, then on F xg F one sometimes writes (eg, ) ~ (e, gf) to indicate a scheme
theoretic equivalence relation on F xg F', with e, g, and f valued points of E, G
and F respectively with the same source. It is clear that this defines a functor R on
Sch/g. It is however not clear that it is representable, or that the quotient exists.
It turns out that indeed R is representable and the quotient E xg F/ ~ exists. In
fact the quotient is E(F’) as we will see in the next lecture.
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2. Realisation of E(F) as a quotient modulo an equivalence relation

2.1. Cartesian cube. Suppose p: X’ — X is an fpqc map such that 7’: B/ — X’
is trivial. Let

92 GX’ L} E/
be the trivialisation. Then, clearly, we have the identifications E'(F) = p*E(F),
and E"(F) = ptE'(F') = p{E'(F). In fact we have a commutative cartesian cube

qF

(2.1.1) E'(F)

Py /
l h

~

with ¢ and ¢ being the natural projections. From this the following result can
essentially be read off:

Proposition 2.1.2. The maps ¢': E'(F) — E(F) and ¢f': E"(F) — E'(F),
1=1,2 are fpgc maps.

Proof. The maps p: X’ — X and p;: X”” — X are fpqc. The result follows, since
(2.1.1) is a cartesian cube. U
The top face of the cube is:

Now the trivialisation §: Gx. = FE’ gives us the isomorphism

Op: Fx: = E'(F).

Let

ri =0t oql (i=1,2).
We then have a cartesian square
(2.1.3) E'(F) - Fx

T1 l | \L
FX/ —— E(F)
Since all arrows are fpqc, and the square is cartesian, from our earlier observations,

E(F) is the quotient of Fx: by the scheme-theoretic equivalence relation E"(F).
In fact E(F) is an effective quotient. One can bring the equivalence relation E” (F)
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down to set theoretic terms in a very understandable way, namely using ~ as a
short hand for the equivalence relation. We have:

(z1, f1) ~ (2, f2) <= p(z}) = p(z3) and f1 = go(@), 5) f2.

We will show this in the next lecture. Moreover, if X’ — X isthemap7: £ — X,
the above will imply that E(F) is the quotient of E x g F' by the equivalence relation
given by

(eg, ) ~ (e, 9f)
foree E(T), g€ G(T), f € F(T), and T' € Sch,g. This is in line with the classical
construction of the associated fibre space from a principal bundle.
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