LECTURE 16

1. Equivalence relations

1.1. Equivalence relations and co-equalizers. The notion of an equivalence relation on a set has the following natural generalization in the category $\mathbb{S c h}_{/ S}$.
Definition 1.1.1. Let $X \in \mathbb{S c h}_{/ S}$. A schematic equivalence relation on X over S is an object $R \in \mathbb{S c h}_{/ S}$ together with a morphism $f: R \rightarrow X \times_{S} X$ such that for every $T \in \mathbb{S c h}_{/ S}$ the map of sets

$$
f(T): R(T) \rightarrow X(T) \times X(T)
$$

is injective and its image is (the graph of) an equivalence relation on the set $X(T)$. Here, for any $Z \in \mathbb{S c h}_{/ S}$, in keeping with our identification of Z with the functor h_{Z}, the set $Z(T)$ denotes the set $h_{Z}(T):=\operatorname{Hom}_{\mathbb{S c h}_{/ S}}(T, Z)$ for any $T \in \mathbb{S c h} / S$.

For example, the scheme $T^{\prime \prime}$ in (1.2.1) is a schematic equivalence relation on T^{\prime} over S, or more precisely, the natural map $T^{\prime \prime} \rightarrow T \times{ }_{S} T$, is a schematic equivalence relation on T^{\prime} over S. We will see -from the definition we give below of quotients by equivalence relations-that $p: T^{\prime} \rightarrow T$ is the scheme theoretic quotient of T^{\prime} with respect to this equivalence relation.

Definition 1.1.2. Let $f: R: X$ be an equivalence relation on $X \in \mathbb{S c h}_{/ S}$ and $f_{1}, f_{2}: R \rightrightarrows X$ the natural maps arising from f and the projections $X \times_{S} X \rightrightarrows X$. A morphism $q: X \rightarrow Q$ in $\mathbb{S c h}_{/ S}$ s a quotient for $R \rightarrow X$ (or simply of X by R) if $q \circ f_{1}=q \circ f_{2}$ and given any map $g: X \rightarrow Z$ in $^{\operatorname{Sch}}{ }_{/ S}$ satisfying $g \circ f_{1}=g \circ f_{2}$ there is a unique map $h: Q \rightarrow Z$ such that $g=h \circ q$, in other words, as in (1.2.1), if-in the diagram below - the solid arrows form a commutative diagram, then the dotted arrow can be filled in a unique way to make the whole diagram commute:

If the quotient $q: X \rightarrow Q$ of X by R exists, then we say it is an effective quotient if the natural map $\left(f_{1}, f_{2}\right): R \rightarrow X \times_{Q} R$ is an isomorphism, i.e., if the square in Diagram (1.1.2.1) is cartesian. We often denote the quotient Q, if it exists, by X / R.

Remark 1.1.3. Clearly, from the universal property of quotients by (schematic) equivalence relations, if such a quotient $q: X \rightarrow Q$ exists, it is unique up to unique isomorphism. In category theory terms, the universal property of $q: X \rightarrow Q$ makes

[^0]it a co-equalizer for the maps f_{1} and f_{2}. Co-equalizers are clearly unique up to unique isomorphisms.
1.2. Example. We have seen that every S-scheme X is an fpqc-sheaf on $\mathbb{S c h}_{/ S}$. Recall that this means the following: Suppose $p: T^{\prime} \rightarrow T$ is an fpqc-map and as usual we set $T^{\prime \prime}:=T^{\prime} \times_{S} T^{\prime}$, and let $p_{1}, p_{2}: T^{\prime \prime} \rightrightarrows T^{\prime}$ denote the two projections. Suppose we have a map $f^{\prime}: T^{\prime} \rightarrow X$ in $\mathbb{S c h}_{/ S}$ such that $f^{\prime} \circ p_{1}=f^{\prime} \circ p_{2}$. Then there is a unique map $f: T \rightarrow X$ such that $f^{\prime}=f \circ p$. In other words if we have a commutative diagram below of solid arrows in $\mathbb{S c h}_{/ S}$ (with the square being cartesian) then the dotted arrow can be filled in a unique way to make the whole diagram commutative.

Here our attention is on X and the cartesian diagram of T 's is allowed to vary. If we transfer our attention to the commutative square (fixing it) and allow X to vary in $\mathbb{S c h}_{/ S}$ then clearly $p: T^{\prime} \rightarrow T$ is the quotient of T^{\prime} by the scheme theoretic equivalence relation $T^{\prime \prime}$. Moreover, since the square in Definition 1.2.1 is cartesian, T is an effective quotient. We may write $T=T^{\prime} / T^{\prime \prime}$.

In a rough way, one might say that the equivalence relation on T^{\prime} represented by the scheme $T^{\prime \prime}$ is the relation that two points of T^{\prime} are related if and only if they lie on the same fibre of p, i.e., if and only if their image in T is the same. If we decide to denote the equivalence relation by \sim rather than $T^{\prime \prime}$, then in terms of valued points, say $t_{1}^{\prime}, t_{2}^{\prime} \in T^{\prime}(W)$, we have $t_{1} \sim t_{2}$ if and only if $p\left(t_{1}\right)=p\left(t_{2}\right)$, where of course, as is standard in this course $p\left(t_{i}^{\prime}\right)=p \circ t_{i}^{\prime}, i=1,2$. This last description is rigorous as a little thought will show, since it characterizes $T^{\prime \prime}$.

We often use the looser notation $x_{1} \sim x_{2}$ to indicate a scheme-theoretic equivalence relation on a scheme, rather than a scheme R and a map $R \rightarrow X$. Here of course, x_{1} and x_{2} are valued points of X. In other words $x_{1} \sim x_{2}$ is really a short hand for a family of set-theoretic equivalence relations, one on each $X(T)$ as T varies over $\mathbb{S c h}_{/ S}$, in such a way that they are compatible with pull backs via maps $T^{\prime} \rightarrow T$. Thus the symbol $x_{1} \sim x_{2}$ will be a short hand for a family of subsets $R(T)$ of $X(T) \times X(T)$, such that R is functorial. Usually the functorial property will be evident. The underlying assumption will be that R is a representable functor. Thus is $E \rightarrow X$ is a G torsor and $F \rightarrow S$ a G-locally quasi-affine space over S, then on $E \times_{S} F$ one sometimes writes $(e g, f) \sim(e, g f)$ to indicate a scheme theoretic equivalence relation on $E \times_{S} F$, with e, g, and f valued points of E, G and F respectively with the same source. It is clear that this defines a functor R on $\mathbb{S c h}_{/ S}$. It is however not clear that it is representable, or that the quotient exists. It turns out that indeed R is representable and the quotient $E \times{ }_{S} F / \sim$ exists. In fact the quotient is $E(F)$ as we will see in the next lecture.

2. Realisation of $E(F)$ as a quotient modulo an equivalence relation

2.1. Cartesian cube. Suppose $p: X^{\prime} \rightarrow X$ is an fpqc map such that $\pi^{\prime}: E^{\prime} \rightarrow X^{\prime}$ is trivial. Let

$$
\theta: G_{X^{\prime}} \xrightarrow{\sim} E^{\prime}
$$

be the trivialisation. Then, clearly, we have the identifications $E^{\prime}(F)=p^{*} E(F)$, and $E^{\prime \prime}(F)=p_{1}^{*} E^{\prime}(F)=p_{2}^{*} E^{\prime}(F)$. In fact we have a commutative cartesian cube

with q^{F} and q_{i}^{F} being the natural projections. From this the following result can essentially be read off:
Proposition 2.1.2. The maps $q^{F}: E^{\prime}(F) \rightarrow E(F)$ and $q_{i}^{F}: E^{\prime \prime}(F) \rightarrow E^{\prime}(F)$, $i=1,2$ are fpqc maps.

Proof. The maps $p: X^{\prime} \rightarrow X$ and $p_{i}: X^{\prime \prime} \rightarrow X$ are fpqc. The result follows, since (2.1.1) is a cartesian cube.

The top face of the cube is:

Now the trivialisation $\theta: G_{X^{\prime}} \xrightarrow{\sim} E^{\prime}$ gives us the isomorphism

$$
\theta_{F}: F_{X^{\prime}} \xrightarrow{\sim} E^{\prime}(F) .
$$

Let

$$
r_{i}=\theta_{F}^{-1} \circ q_{i}^{F} \quad(i=1,2)
$$

We then have a cartesian square

Since all arrows are fpqc, and the square is cartesian, from our earlier observations, $E(F)$ is the quotient of $F_{X^{\prime}}$ by the scheme-theoretic equivalence relation $E^{\prime \prime}(F)$. In fact $E(F)$ is an effective quotient. One can bring the equivalence relation $E^{\prime \prime}(F)$
down to set theoretic terms in a very understandable way, namely using \sim as a short hand for the equivalence relation. We have:

$$
\left(x_{1}^{\prime}, f_{1}\right) \sim\left(x_{2}^{\prime}, f_{2}\right) \Longleftrightarrow p\left(x_{1}^{\prime}\right)=p\left(x_{2}^{\prime}\right) \text { and } f_{1}=g_{\theta}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2}
$$

We will show this in the next lecture. Moreover, if $X^{\prime} \rightarrow X$ is the map $\pi: E \rightarrow X$, the above will imply that $E(F)$ is the quotient of $E \times{ }_{S} F$ by the equivalence relation given by

$$
(e g, f) \sim(e, g f)
$$

for $e \in E(T), g \in G(T), f \in F(T)$, and $T \in \mathbb{S c h}_{/ S}$. This is in line with the classical construction of the associated fibre space from a principal bundle.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ (1956/57), $182(1958 / 59), 190(1959 / 60), 195(1959 / 60), 212(1960 / 61), 221(1960 / 61), 232$ (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA] ___ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGA II] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III 1_{1} _, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA III ${ }_{2}$ _ Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
$\left[\mathrm{EGA} \mathrm{IV}_{1}\right] \ldots$ _Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGA}_{2}\right]$ _, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
$\left[\mathrm{EGA} \mathrm{IV}_{3}\right] \ldots$, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
[EGAIV4]_, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: 12 October 2012.

