LECTURE 15

1. Preliminaries

By a *G*-space *F* we will mean an *S*-scheme *F* on which *G* acts from the left. We decided to use the term *G*-space rather than *G*-scheme, for the latter can be confused with an object of $Sch_{/G}$. A locally quasi-affine *G*-space *F* is a *G*-space such that *F* can be covered by *G*-stable open subschemes *U* such that each such *U* is quasi-affine over *S*. This means that *U* is *G*-stable and if $\phi: U \to S$ is the structure map then the natural map of *S*-schemes $U \to \mathbf{Spec}(\phi_* \mathscr{O}_U)$ is an open immersion. Clearly *G*-spaces form a category with morphisms being *G*-equivariant maps, and locally quasi-affine *G*-spaces form a full subcategory. One of the motivations for this course is to construct the fibre space $E(F) \to X$ associated with a *G*-torsor $E \to X$. The construction is carried out below (the definition and characterizing property are given in (2.2.4)). Our construction uses arbitrary trivialisations of the torsor *E*. The standard construction of E(F) uses $E \to X$ as the fpqc trivializing cover of *E*, and we deal with this in later lectures.

2. Construction of the associated fibre space

2.1. For any $T \in Sch_{S}$, F_{T} will denote the product scheme $T \times_{S} F$. Note that $F_{T} \to T$ is a locally quasi-affine G_{T} -space.

We have a natural isomorphism

(2.1.1)
$$\psi_{\theta} = \psi_{\theta}(F) \colon p_{2}^{*}F_{X'} \xrightarrow{\sim} p_{1}^{*}F_{X'}$$

given by

$$(2.1.2) \qquad \qquad (x'', f) \mapsto (x'', g_{\theta}(x'')f)$$

for valued-points x'' and f of X'' and F respectively. Formula (??) immediately gives the formula

(2.1.3)
$$p_{12}^{*}(\psi_{\theta}) \circ p_{23}^{*}(\psi_{\theta}) = p_{13}^{*}(\psi_{\theta}).$$

Thus $(F_{X'}, \psi_{\theta})$ is a descent data on $X' \xrightarrow{p} X$. Since $F \to S$ is a locally quasi-affine G-space, so is $X' \times_S F \to X'$ over X'. Moreover p is fpqc. Standard descent theory shows that $F_{X'}$ "descends" to X. In greater precision, there exists (up to unique isomorphism) a unique X-scheme E(F)

$$\pi_{F}: E(F) \to X$$

such that $F_{X'}$ is canonically isomorphic to $p^*E(F)$ and such that the identity $p_2^*p^*E(F) = p_1^*p^*E(F)$ corresponds to the isomorphism $\psi_{\theta} : p_2^*F_{X'} \xrightarrow{\sim} p_1^*F_{X'}$.

Date: October 10, 2012.

LECTURE 15

2.2. Independence of E(F) from trivialisations. The above construction depends a-priori on the choice of the trivialing fpqc-cover $p: X' \to X$ as well as the trivialisation $\theta: G_{X'} \xrightarrow{\sim} E'$. For precision, let us write $E(F, X', \theta)$ for the scheme E(F) just constructed. We will show natural isomorphisms

(2.2.1)
$$\mu_{12} \colon E(F, X'_2, \theta_2) \xrightarrow{\sim} E(F, X'_1, \theta_1)$$

for tryializing data $(X'_i \to X', \theta_i)$, i = 1, 2, such that for a third such data (X'_3, θ_3) we have compatibility relations

First note that if $v: X'_* \to X'$ is an fpqc-map, and $\theta_* := v^*\theta$, the trivialisation induced by θ , then $v^*g_{\theta} = g_{\theta_*}$. As a consequence $v^*\psi_{\theta} = \psi_{\theta_*}$. Thus, if the map $\alpha: F_{X'} \to E(F, X, \theta)$ is the natural descent map for the data ψ_{θ} , the composite

$$F_{X'_*} \xrightarrow{\operatorname{via} v} F_{X'} \xrightarrow{\alpha} E(F, X', \theta)$$

is the natural descent map for the data ψ_{θ_*} . It follows that we have the identity

(2.2.3)
$$E(F, X', \theta) = E(F, X'_*, \theta_*).$$

In classical terms, given glueing data on an open cover, it and the induced data on a refinement yield the same glued object.

Next suppose $p: X' \to X$ is as in the previous subsections. Suppose θ_1 and θ_1 are two trivialisations of $E' \to X'$. The two trivialisations differ by right multiplication by an element G(X'). More precisely there an element $c_{12} \in G(X')$ such that if $A_{12}: G_{X'} \to G_{X'}$ is given by left multiplication by c_{12} , then $\theta_2 = \theta_1 \circ A_{12}$. Let

$$A_{12}^F \colon F_{X'} \xrightarrow{\sim} F_{X'}$$

be the isomorphism induced by $(x', f) \mapsto (x', c_{12}(x')f)$. One checks easily that the diagram below commutes:

Thus A_{12}^F is an isomorphism of descent data. This defines the isomorphism μ_{12} in (2.2.1) when $X'_1 = X'_2 = X'$. Moreover, if $\theta_3: G_{X'} \to E'$ is a third trivialisation of E', then it is easy to see that $c_{12}c_{23} = c_{13}$, and this in turn ensures that that (2.2.2) is satisfied. Suppose $v: X'_* \to X'$ is an fpqc refinement of the E-trivializing fpqc-cover $p: X' \to X$. From the above argument we have an isomorphism $\mu_{12}^*: E(F, X'_*, v^*\theta_2) \xrightarrow{\sim} E(F, X'_*, v^*\theta_1)$. One checks that $v^*c_{12} := c_{12} \circ v$ is the element of $G(X'_*)$ which effects the transition from $v^*\theta_2$ to $v^*\theta_1$. Thus, under the identification (2.2.3) above, we have $\mu_{12}^* = \mu_{12}$.

Finally, given any finite set of fpqc-refinements $v_i: X'_i \to X'$ of X'—in other words given a finite set of fpqc-maps v_i —we can find a fpqc-refinement $v: T' \to X'$ such that T' refines each of the X'_i 's. Indeed the fibre-product of the X'_i over X'

LECTURE 15

would be such a refinement. Using this and what we've shown above, one can find μ_{ii} as in (2.2.1) which satisfy (2.2.2). We leave the details to the reader.

It is clear that $F \rightsquigarrow E(F, X', \theta)$ is functorial in F, i.e., it varies well with Gmaps $F \to F'$. Indeed the construction is driven by the "transition function" $g_{\theta} \colon X'' \to G$ for all fibres, and hence by the master co-cycle relations (??). It is easy to see that if $F \to F'$ is a map of locally quasi-affine G-spaces, the map $E(F, X', \theta) \to E(F', X', \theta)$ is compatible with the change of trivializing data (X', θ) since the maps A_{12}^F and $A_{12}^{F'}$ are driven by the same element $c_{12} \in G(X')$, and we can always assume that the trivialisations θ_1 and θ_2 occur over the same scheme X'. Thus $F \rightsquigarrow E(F)$ is functorial in F. Note that $E(F) \in Sch_{/X}$. Let $\pi_F \colon E(F) \to X$ be the structure map.

We are in a position to make a definition:

Definition 2.2.4. Let $\pi: E \to X$ be a *G*-torsor, *F* a locally quasi-affine *G*-space. The *X*-scheme $\pi_F: E(F) \to X$ constructed above is called the *fibre space associated* to *F*. It is characterized by the following property: Let $p: X' \to X$ be an fpqc map such that $E':= E_{X'}$ is a trivial *G*-torsor, and $\theta: G_{X'} \longrightarrow E'$ a trivialisation of E'. Then there is an isomorphism of $G_{X'}$ -spaces

$$\theta_F : F_{X'} \xrightarrow{\sim} p^* E(F)$$

such that the $G_{X''}$ -space automorphism $p_1^* \theta_F^{-1} \circ p_2^* \theta_F$ of $F_{X''}$ $(= p_i^* F_{X'})$ is given by

$$(x'', f) \mapsto (x'', g_{\theta}(x'')f).$$

Here g_{θ} is the element in G(X'') defined in (??) or equivalently in (??). In other words, g_{θ} is the element such that the automorphism $p_1^* \theta^{-1} \circ p_2^* \theta$ of the trivial G-torsor $G_{X''}$ is described by $(x'', g) \mapsto (x'', g_{\theta}(x'')g)$.

From the argument given just above Definition 2.2.4 we have:

Proposition 2.2.5. The association $F \rightsquigarrow E(F)$ is a functor from the category of locally quasi-affine G-spaces to the category of schemes over X.

Remark 2.2.6. If $E \to X$ is a trivial *G*-torsor, then clearly so is E(F). Indeed, in this case one may take X' = X and the matter is then clear.

2.3. Cartesian cube. Suppose $p: X' \to X$ is an fpqc map such that $\pi': E' \to X'$ is trivial. Then, clearly, we have the identifications $E'(F) = p^*E(F)$, and $E''(F) = p_1^*E'(F) = p_2^*E'(F)$. In fact we have a commutative cartesian cube, analogous to—and arising from—diagram (??), namely

with q^F and q_i^F being the natural projections. From this the following result can essentially be read off:

Proposition 2.3.2. The maps $q^F : E'(F) \to E(F)$ and $q_i^F : E''(F) \to E'(F)$, i = 1, 2 are fpqc maps.

Proof. The maps $p: X' \to X$ and $p_i: X'' \to X$ are fpqc. The result follows, since (2.3.1) is a cartesian cube.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no[°] 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [EGA I] _____, Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
- [EGA II] _____, Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
- [EGA III₁] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
- [EGA III₂] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
- [EGA IV₁] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
- [EGA IV₂] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
- [EGA IV₃] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
- [EGA IV₄] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
- [SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.