LECTURE 15

1. Preliminaries

By a G-space F we will mean an S-scheme F on which G acts from the left.
We decided to use the term G-space rather than G-scheme, for the latter can be
confused with an object of Sch/q. A locally quasi-affine G-space F' is a G-space
such that F' can be covered by G-stable open subschemes U such that each such U is
quasi-affine over S. This means that U is G-stable and if ¢: U — S is the structure
map then the natural map of S-schemes U — Spec(¢.0y) is an open immersion.
Clearly G-spaces form a category with morphisms being G-equivariant maps, and
locally quasi-affine G-spaces form a full subcategory. One of the motivations for
this course is to construct the fibre space E(F) — X associated with a G-torsor
E — X. The construction is carried out below (the definition and characterizing
property are given in (2.2.4)). Our construction uses arbitrary trivialisations of the
torsor E. The standard construction of E(F) uses E — X as the fpqc trivializing
cover of F/, and we deal with this in later lectures.

2. Construction of the associated fibre space

2.1. For any T € Sch,g, Fr will denote the product scheme T' xg F'. Note that
Fr — T is a locally quasi-affine Gp-space.
We have a natural isomorphism

(2'1'1) 1/19 = %(F)i p:FX’ - p;kFX’
given by
(2.1.2) (@, f) = (2", go(2") )

for valued-points 2’/ and f of X” and F respectively. Formula (??) immediately
gives the formula

(213) p; (7/}9) Ong (1/19) = p;k?, (?/19)~

Thus (Fx/, ¥,) is a descent data on X' 2, X. Since F — S is a locally quasi-affine
G-space, sois X' xg F' — X’ over X’. Moreover p is fpqc. Standard descent theory
shows that Fix, “descends” to X. In greater precision, there exists (up to unique
isomorphism) a unique X-scheme E(F)

7w E(F)— X
such that Fx/ is canonically isomorphic to p*E(F) and such that the identity
pip*E(F) = pip*E(F) corresponds to the isomorphism ), : psFxr = pyFxo.
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2.2. Independence of E(F) from trivialisations. The above construction de-
pends a-priori on the choice of the trivialzing fpqe-cover p: X’ — X as well as the
trivialisation §: Gx» == FE’. For precision, let us write E(F, X', ) for the scheme
E(F) just constructed. We will show natural isomorphisms

(221) IZPR E(Fa Xé7 92) - E(FvX{a 91)

for trvializing data (X! — X', 6;), i = 1,2, such that for a third such data (X}, 63)
we have compatibility relations

(2.2.2) fhig © Moy = Hyg-

First note that if v: X, — X’ is an fpqc-map, and 6, := v*0, the trivialisation
induced by 6, then v*g, = g, . As a consequence v*¢, = v, . Thus, if the map
a: Fx: — E(F, X,0) is the natural descent map for the data v,, the composite

Fx; 2% Fyo & B(F, X', 0)
is the natural descent map for the data 1, . It follows that we have the identity
(2.2.3) E(F,X',0)=E(F,X_,0,).

In classical terms, given glueing data on an open cover, it and the induced data on
a refinement yield the same glued object.

Next suppose p: X’ — X is as in the previous subsections. Suppose #; and 6, are
two trivialisations of B’ — X’. The two trivialisations differ by right multiplication
by an element G(X’). More precisely there an element ¢, € G(X') such that if
A, : Gx' = Gx is given by left multiplication by c,,, then §; = 6,0A4,,. Let

Af; : FX’ - FX’
be the isomorphism induced by (2, f) — (2, ¢, (2)f). One checks easily that the
diagram below commutes:

Y

p:Fx) ————p*Fx/

* AF * A F
p2A12 l Ip1A12

p:FX’ ?pTFX/
1

Thus A is an isomorphism of descent data. This defines the isomorphism g,
in (2.2.1) when X{ = X}, = X'. Moreover, if 03: Gx, — E’ is a third trivial-
isation of E’, then it is easy to see that ¢,,c,, = ¢,;, and this in turn ensures
that that (2.2.2) is satisfied. Suppose v: X, — X’ is an fpqc refinement of the
E-trivializing fpqc-cover p: X’ — X. From the above argument we have an iso-
morphism p*, : E(F, X|,v*0) =~ E(F,X],v*0;). One checks that v*c ,:=c,,ov
is the element of G(X) which effects the transition from v*65 to v*6;. Thus, under
the identification (2.2.3) above, we have u, = p,,.

Finally, given any finite set of fpqc-refinements v;: X! — X’ of X’—in other
words given a finite set of fpqc-maps v;—we can find a fpqc-refinement v: 77 — X'
such that T refines each of the X/’s. Indeed the fibre-product of the X/ over X’
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would be such a refinement. Using this and what we’ve shown above, one can find
p;; as in (2.2.1) which satisfy (2.2.2). We leave the details to the reader.

It is clear that F' ~ E(F,X’,0) is functorial in F, i.e., it varies well with G-
maps F' — F’. Indeed the construction is driven by the “transition function”
go: X" — G for all fibres, and hence by the master co-cycle relations (?77?). It
is easy to see that if F — F’ is a map of locally quasi-affine G-spaces, the map
E(F,X',0) — E(F', X', 0) is compatible with the change of trivialzing data (X', 0)
since the maps A, and Af;/ are driven by the same element ¢,, € G(X’), and we
can always assume that the trivialisations #; and 5 occur over the same scheme X'.
Thus F' ~ E(F) is functorial in F. Note that E(F) € Sch/x. Let 7.: E(F) — X
be the structure map.

We are in a position to make a definition:

Definition 2.2.4. Let m: E — X be a G-torsor, F' a locally quasi-affine G-space.
The X-scheme 7, : E(F) — X constructed above is called the fibre space associated
to F. It is characterized by the following property: Let p: X’ — X be an fpqc map
such that E':= Ex is a trivial G-torsor, and 0: Gx =~ E’ a trivialisation of E’.
Then there is an isomorphism of G x/-spaces

GFI FX/ - p*E(F)
such that the G x~-space automorphism p*0_'op*6, of Fx» (= p; Fx:) is given by
(@", f) = (2", go(2”) ).

Here gg is the element in G(X") defined in (??) or equivalently in (??). In other
words, gy is the element such that the automorphism p;"ﬁ’lo p;0 of the trivial
G-torsor Gx is described by (2", g) — (2", go(z")g).

From the argument given just above Definition 2.2.4 we have:

Proposition 2.2.5. The association F ~~ E(F) is a functor from the category of
locally quasi-affine G-spaces to the category of schemes over X.

Remark 2.2.6. If £ — X is a trivial G-torsor, then clearly so is E(F'). Indeed, in
this case one may take X’ = X and the matter is then clear.

2.3. Cartesian cube. Suppose p: X’ — X is an fpqc map such that #’: £/ — X’
is trivial. Then, clearly, we have the identifications E'(F) = p*E(F), and E"(F) =
piE'(F) = p;E'(F). In fact we have a commutative cartesian cube, analogous
to—and arising from—diagram (??), namely

(2.3.1) E'(F)

>,

E// F)

/

B/(F)

l ‘n—/F‘
X

/

1, /
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with ¢ and ¢ being the natural projections. From this the following result can
essentially be read off:

Proposition 2.3.2. The maps ¢': E'(F) — E(F) and ¢f': E"(F) — E'(F),
1 =1,2 are fpgc maps.

Proof. The maps p: X’ — X and p;: X”” — X are fpqc. The result follows, since
(2.3.1) is a cartesian cube. O
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