LECTURE 15

1. Preliminaries

By a G-space F we will mean an S-scheme F on which G acts from the left. We decided to use the term G-space rather than G-scheme, for the latter can be confused with an object of $\mathbb{S c h}_{/ G}$. A locally quasi-affine G-space F is a G-space such that F can be covered by G-stable open subschemes U such that each such U is quasi-affine over S. This means that U is G-stable and if $\phi: U \rightarrow S$ is the structure map then the natural map of S-schemes $U \rightarrow \boldsymbol{\operatorname { S p e c }}\left(\phi_{*} \mathscr{O}_{U}\right)$ is an open immersion. Clearly G-spaces form a category with morphisms being G-equivariant maps, and locally quasi-affine G-spaces form a full subcategory. One of the motivations for this course is to construct the fibre space $E(F) \rightarrow X$ associated with a G-torsor $E \rightarrow X$. The construction is carried out below (the definition and characterizing property are given in (2.2.4)). Our construction uses arbitrary trivialisations of the torsor E. The standard construction of $E(F)$ uses $E \rightarrow X$ as the fpqc trivializing cover of E, and we deal with this in later lectures.

2. Construction of the associated fibre space

2.1. For any $T \in \mathbb{S c h}_{/ S}, F_{T}$ will denote the product scheme $T \times{ }_{S} F$. Note that $F_{T} \rightarrow T$ is a locally quasi-affine G_{T}-space.

We have a natural isomorphism

$$
\begin{equation*}
\psi_{\theta}=\psi_{\theta}(F): p_{2}^{*} F_{X^{\prime}} \xrightarrow{\sim} p_{1}^{*} F_{X^{\prime}} \tag{2.1.1}
\end{equation*}
$$

given by

$$
\begin{equation*}
\left(x^{\prime \prime}, f\right) \mapsto\left(x^{\prime \prime}, g_{\theta}\left(x^{\prime \prime}\right) f\right) \tag{2.1.2}
\end{equation*}
$$

for valued-points $x^{\prime \prime}$ and f of $X^{\prime \prime}$ and F respectively. Formula (??) immediately gives the formula

$$
\begin{equation*}
p_{12}^{*}\left(\psi_{\theta}\right) \circ p_{23}^{*}\left(\psi_{\theta}\right)=p_{13}^{*}\left(\psi_{\theta}\right) \tag{2.1.3}
\end{equation*}
$$

Thus $\left(F_{X^{\prime}}, \psi_{\theta}\right)$ is a descent data on $X^{\prime} \xrightarrow{p} X$. Since $F \rightarrow S$ is a locally quasi-affine G-space, so is $X^{\prime} \times{ }_{S} F \rightarrow X^{\prime}$ over X^{\prime}. Moreover p is fpqc. Standard descent theory shows that $F_{X^{\prime}}$ "descends" to X. In greater precision, there exists (up to unique isomorphism) a unique X-scheme $E(F)$

$$
\pi_{F}: E(F) \rightarrow X
$$

such that $F_{X^{\prime}}$ is canonically isomorphic to $p^{*} E(F)$ and such that the identity $p_{2}^{*} p^{*} E(F)=p_{1}^{*} p^{*} E(F)$ corresponds to the isomorphism $\psi_{\theta}: p_{2}^{*} F_{X^{\prime}} \xrightarrow{\sim} p_{1}^{*} F_{X^{\prime}}$.

[^0]2.2. Independence of $E(F)$ from trivialisations. The above construction depends a-priori on the choice of the trivialzing fpqc-cover $p: X^{\prime} \rightarrow X$ as well as the trivialisation $\theta: G_{X^{\prime}} \xrightarrow{\sim} E^{\prime}$. For precision, let us write $E\left(F, X^{\prime}, \theta\right)$ for the scheme $E(F)$ just constructed. We will show natural isomorphisms
\[

$$
\begin{equation*}
\mu_{12}: E\left(F, X_{2}^{\prime}, \theta_{2}\right) \xrightarrow{\sim} E\left(F, X_{1}^{\prime}, \theta_{1}\right) \tag{2.2.1}
\end{equation*}
$$

\]

for trvializing data $\left(X_{i}^{\prime} \rightarrow X^{\prime}, \theta_{i}\right), i=1,2$, such that for a third such data $\left(X_{3}^{\prime}, \theta_{3}\right)$ we have compatibility relations

$$
\begin{equation*}
\mu_{12} \circ \mu_{23}=\mu_{13} . \tag{2.2.2}
\end{equation*}
$$

First note that if $v: X_{*}^{\prime} \rightarrow X^{\prime}$ is an fpqc-map, and $\theta_{*}:=v^{*} \theta$, the trivialisation induced by θ, then $v^{*} g_{\theta}=g_{\theta_{*}}$. As a consequence $v^{*} \psi_{\theta}=\psi_{\theta_{*}}$. Thus, if the map $\alpha: F_{X^{\prime}} \rightarrow E(F, X, \theta)$ is the natural descent map for the data ψ_{θ}, the composite

$$
F_{X_{*}^{\prime}} \xrightarrow{\text { via } v} F_{X^{\prime}} \xrightarrow{\alpha} E\left(F, X^{\prime}, \theta\right)
$$

is the natural descent map for the data $\psi_{\theta_{*}}$. It follows that we have the identity

$$
\begin{equation*}
E\left(F, X^{\prime}, \theta\right)=E\left(F, X_{*}^{\prime}, \theta_{*}\right) \tag{2.2.3}
\end{equation*}
$$

In classical terms, given glueing data on an open cover, it and the induced data on a refinement yield the same glued object.

Next suppose $p: X^{\prime} \rightarrow X$ is as in the previous subsections. Suppose θ_{1} and θ_{1} are two trivialisations of $E^{\prime} \rightarrow X^{\prime}$. The two trivialisations differ by right multiplication by an element $G\left(X^{\prime}\right)$. More precisely there an element $c_{12} \in G\left(X^{\prime}\right)$ such that if $A_{12}: G_{X^{\prime}} \rightarrow G_{X^{\prime}}$ is given by left multiplication by c_{12}, then $\theta_{2}=\theta_{1} \circ A_{12}$. Let

$$
A_{12}^{F}: F_{X^{\prime}} \xrightarrow{\sim} F_{X^{\prime}}
$$

be the isomorphism induced by $\left(x^{\prime}, f\right) \mapsto\left(x^{\prime}, c_{12}\left(x^{\prime}\right) f\right)$. One checks easily that the diagram below commutes:

Thus A_{12}^{F} is an isomorphism of descent data. This defines the isomorphism μ_{12} in (2.2.1) when $X_{1}^{\prime}=X_{2}^{\prime}=X^{\prime}$. Moreover, if $\theta_{3}: G_{X^{\prime}} \rightarrow E^{\prime}$ is a third trivialisation of E^{\prime}, then it is easy to see that $c_{12} c_{23}=c_{13}$, and this in turn ensures that that (2.2.2) is satisfied. Suppose $v: X_{*}^{\prime} \rightarrow X^{\prime}$ is an fpqc refinement of the E-trivializing fpqc-cover $p: X^{\prime} \rightarrow X$. From the above argument we have an isomorphism $\mu_{12}^{*}: E\left(F, X_{*}^{\prime}, v^{*} \theta_{2}\right) \xrightarrow{\sim} E\left(F, X_{*}^{\prime}, v^{*} \theta_{1}\right)$. One checks that $v^{*} c_{12}:=c_{12} \circ v$ is the element of $G\left(X_{*}^{\prime}\right)$ which effects the transition from $v^{*} \theta_{2}$ to $v^{*} \theta_{1}$. Thus, under the identification (2.2.3) above, we have $\mu_{12}^{*}=\mu_{12}$.

Finally, given any finite set of fpqc-refinements $v_{i}: X_{i}^{\prime} \rightarrow X^{\prime}$ of X^{\prime}-in other words given a finite set of fpqc-maps v_{i}-we can find a fpqc-refinement $v: T^{\prime} \rightarrow X^{\prime}$ such that T^{\prime} refines each of the X_{i}^{\prime} 's. Indeed the fibre-product of the X_{i}^{\prime} over X^{\prime}
would be such a refinement. Using this and what we've shown above, one can find $\mu_{i j}$ as in (2.2.1) which satisfy (2.2.2). We leave the details to the reader.

It is clear that $F \rightsquigarrow E\left(F, X^{\prime}, \theta\right)$ is functorial in F, i.e., it varies well with G maps $F \rightarrow F^{\prime}$. Indeed the construction is driven by the "transition function" $g_{\theta}: X^{\prime \prime} \rightarrow G$ for all fibres, and hence by the master co-cycle relations (??). It is easy to see that if $F \rightarrow F^{\prime}$ is a map of locally quasi-affine G-spaces, the map $E\left(F, X^{\prime}, \theta\right) \rightarrow E\left(F^{\prime}, X^{\prime}, \theta\right)$ is compatible with the change of trivialzing data $\left(X^{\prime}, \theta\right)$ since the maps A_{12}^{F} and $A_{12}^{F^{\prime}}$ are driven by the same element $c_{12} \in G\left(X^{\prime}\right)$, and we can always assume that the trivialisations θ_{1} and θ_{2} occur over the same scheme X^{\prime}. Thus $F \rightsquigarrow E(F)$ is functorial in F. Note that $E(F) \in \mathbb{S c h}_{/ X}$. Let $\pi_{F}: E(F) \rightarrow X$ be the structure map.

We are in a position to make a definition:
Definition 2.2.4. Let $\pi: E \rightarrow X$ be a G-torsor, F a locally quasi-affine G-space. The X-scheme $\pi_{F}: E(F) \rightarrow X$ constructed above is called the fibre space associated to F. It is characterized by the following property: Let $p: X^{\prime} \rightarrow X$ be an fpqc map such that $E^{\prime}:=E_{X^{\prime}}$ is a trivial G-torsor, and $\theta: G_{X^{\prime}} \xrightarrow{\sim} E^{\prime}$ a trivialisation of E^{\prime}. Then there is an isomorphism of $G_{X^{\prime} \text {-spaces }}$

$$
\theta_{F}: F_{X^{\prime}} \xrightarrow{\sim} p^{*} E(F)
$$

such that the $G_{X^{\prime \prime}}$-space automorphism $p_{1}^{*} \theta_{F}^{-1} \circ p_{2}^{*} \theta_{F}$ of $F_{X^{\prime \prime}}\left(=p_{i}^{*} F_{X^{\prime}}\right)$ is given by

$$
\left(x^{\prime \prime}, f\right) \mapsto\left(x^{\prime \prime}, g_{\theta}\left(x^{\prime \prime}\right) f\right)
$$

Here g_{θ} is the element in $G\left(X^{\prime \prime}\right)$ defined in (??) or equivalently in (??). In other words, g_{θ} is the element such that the automorphism $p_{1}^{*} \theta^{-1} \circ p_{2}^{*} \theta$ of the trivial G-torsor $G_{X^{\prime \prime}}$ is described by $\left(x^{\prime \prime}, g\right) \mapsto\left(x^{\prime \prime}, g_{\theta}\left(x^{\prime \prime}\right) g\right)$.

From the argument given just above Definition 2.2.4 we have:
Proposition 2.2.5. The association $F \rightsquigarrow E(F)$ is a functor from the category of locally quasi-affine G-spaces to the category of schemes over X.

Remark 2.2.6. If $E \rightarrow X$ is a trivial G-torsor, then clearly so is $E(F)$. Indeed, in this case one may take $X^{\prime}=X$ and the matter is then clear.
2.3. Cartesian cube. Suppose $p: X^{\prime} \rightarrow X$ is an fpqc map such that $\pi^{\prime}: E^{\prime} \rightarrow X^{\prime}$ is trivial. Then, clearly, we have the identifications $E^{\prime}(F)=p^{*} E(F)$, and $E^{\prime \prime}(F)=$ $p_{1}^{*} E^{\prime}(F)=p_{2}^{*} E^{\prime}(F)$. In fact we have a commutative cartesian cube, analogous to-and arising from-diagram (??), namely

with q^{F} and q_{i}^{F} being the natural projections. From this the following result can essentially be read off:
Proposition 2.3.2. The maps $q^{F}: E^{\prime}(F) \rightarrow E(F)$ and $q_{i}^{F}: E^{\prime \prime}(F) \rightarrow E^{\prime}(F)$, $i=1,2$ are fpqc maps.

Proof. The maps $p: X^{\prime} \rightarrow X$ and $p_{i}: X^{\prime \prime} \rightarrow X$ are fpqc. The result follows, since (2.3.1) is a cartesian cube.

References

[FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no ${ }^{\circ} 149$ (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
[EGA]__ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971)
[EGA I] , Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
[EGAII] , Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
[EGA III ${ }_{1}$ __, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
[EGA III ${ }_{2}$ _ , Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
[EGA IV ${ }_{1}$] \qquad , Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
$\left[\mathrm{EGAIV}_{2}\right]$ _ Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
[EGA $\left.\mathrm{IV}_{3}\right] \ldots$, Élements de géométrie algébrique $I V$. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
[EGAIV4]_, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
[SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).
[FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
[BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, SpringerVerlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.

[^0]: Date: October 10, 2012.

