
LECTURE 15

1. Preliminaries

By a G-space F we will mean an S-scheme F on which G acts from the left.
We decided to use the term G-space rather than G-scheme, for the latter can be
confused with an object of Sch/G. A locally quasi-affine G-space F is a G-space
such that F can be covered by G-stable open subschemes U such that each such U is
quasi-affine over S. This means that U is G-stable and if φ : U → S is the structure
map then the natural map of S-schemes U → Spec(φ∗OU ) is an open immersion.
Clearly G-spaces form a category with morphisms being G-equivariant maps, and
locally quasi-affine G-spaces form a full subcategory. One of the motivations for
this course is to construct the fibre space E(F ) → X associated with a G-torsor
E → X. The construction is carried out below (the definition and characterizing
property are given in (2.2.4)). Our construction uses arbitrary trivialisations of the
torsor E. The standard construction of E(F ) uses E → X as the fpqc trivializing
cover of E, and we deal with this in later lectures.

2. Construction of the associated fibre space

2.1. For any T ∈ Sch/S , FT will denote the product scheme T ×S F . Note that
FT → T is a locally quasi-affine GT -space.

We have a natural isomorphism

(2.1.1) ψ
θ

= ψ
θ
(F ) : p∗

2
FX′ −→∼ p∗

1
FX′

given by

(2.1.2) (x′′, f) 7→ (x′′, gθ(x
′′)f)

for valued-points x′′ and f of X ′′ and F respectively. Formula (??) immediately
gives the formula

(2.1.3) p∗
12

(ψ
θ
) ◦p∗

23
(ψ

θ
) = p∗

13
(ψ

θ
).

Thus (FX′ , ψθ ) is a descent data on X ′
p−→ X. Since F → S is a locally quasi-affine

G-space, so is X ′×S F → X ′ over X ′. Moreover p is fpqc. Standard descent theory
shows that FX′ “descends” to X. In greater precision, there exists (up to unique
isomorphism) a unique X-scheme E(F )

π
F

: E(F )→ X

such that FX′ is canonically isomorphic to p∗E(F ) and such that the identity
p∗

2
p∗E(F ) = p∗

1
p∗E(F ) corresponds to the isomorphism ψ

θ
: p∗

2
FX′ −→∼ p∗

1
FX′ .
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2.2. Independence of E(F ) from trivialisations. The above construction de-
pends a-priori on the choice of the trivialzing fpqc-cover p : X ′ → X as well as the
trivialisation θ : GX′ −→∼ E′. For precision, let us write E(F,X ′, θ) for the scheme
E(F ) just constructed. We will show natural isomorphisms

(2.2.1) µ12 : E(F,X ′2, θ2) −→∼ E(F,X ′1, θ1)

for trvializing data (X ′i → X ′, θi), i = 1, 2, such that for a third such data (X ′3, θ3)
we have compatibility relations

(2.2.2) µ12
◦µ23 = µ13 .

First note that if v : X ′∗ → X ′ is an fpqc-map, and θ∗ := v∗θ, the trivialisation
induced by θ, then v∗g

θ
= g

θ∗
. As a consequence v∗ψ

θ
= ψ

θ∗
. Thus, if the map

α : FX′ → E(F,X, θ) is the natural descent map for the data ψ
θ
, the composite

FX′∗
via v−−−→ FX′

α−→ E(F,X ′, θ)

is the natural descent map for the data ψ
θ∗

. It follows that we have the identity

(2.2.3) E(F,X ′, θ) = E(F,X ′∗, θ∗).

In classical terms, given glueing data on an open cover, it and the induced data on
a refinement yield the same glued object.

Next suppose p : X ′ → X is as in the previous subsections. Suppose θ1 and θ1 are
two trivialisations of E′ → X ′. The two trivialisations differ by right multiplication
by an element G(X ′). More precisely there an element c

12
∈ G(X ′) such that if

A12 : GX′ → GX′ is given by left multiplication by c12 , then θ2 = θ1 ◦A12 . Let

AF
12

: FX′ −→∼ FX′

be the isomorphism induced by (x′, f) 7→ (x′, c
12

(x′)f). One checks easily that the
diagram below commutes:

p∗
2
FX′

p∗
2
AF

12
o

��

˜ψθ2 // p∗
1
FX′

o p∗
1
AF

12

��
p∗

2
FX′

ψ̃
θ1

// p∗
1
FX′

Thus AF
12

is an isomorphism of descent data. This defines the isomorphism µ
12

in (2.2.1) when X ′1 = X ′2 = X ′. Moreover, if θ3 : GX′ → E′ is a third trivial-
isation of E′, then it is easy to see that c12c23 = c13 , and this in turn ensures
that that (2.2.2) is satisfied. Suppose v : X ′∗ → X ′ is an fpqc refinement of the
E-trivializing fpqc-cover p : X ′ → X. From the above argument we have an iso-
morphism µ∗

12
: E(F,X ′∗, v

∗θ2) −→∼ E(F,X ′∗, v
∗θ1). One checks that v∗c

12
:= c

12
◦v

is the element of G(X ′∗) which effects the transition from v∗θ2 to v∗θ1. Thus, under
the identification (2.2.3) above, we have µ∗

12
= µ12 .

Finally, given any finite set of fpqc-refinements vi : X
′
i → X ′ of X ′—in other

words given a finite set of fpqc-maps vi—we can find a fpqc-refinement v : T ′ → X ′

such that T ′ refines each of the X ′i’s. Indeed the fibre-product of the X ′i over X ′
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would be such a refinement. Using this and what we’ve shown above, one can find
µij as in (2.2.1) which satisfy (2.2.2). We leave the details to the reader.

It is clear that F  E(F,X ′, θ) is functorial in F , i.e., it varies well with G-
maps F → F ′. Indeed the construction is driven by the “transition function”
gθ : X ′′ → G for all fibres, and hence by the master co-cycle relations (??). It
is easy to see that if F → F ′ is a map of locally quasi-affine G-spaces, the map
E(F,X ′, θ)→ E(F ′, X ′, θ) is compatible with the change of trivialzing data (X ′, θ)

since the maps AF
12

and AF
′

12
are driven by the same element c12 ∈ G(X ′), and we

can always assume that the trivialisations θ1 and θ2 occur over the same scheme X ′.
Thus F  E(F ) is functorial in F . Note that E(F ) ∈ Sch/X . Let π

F
: E(F )→ X

be the structure map.
We are in a position to make a definition:

Definition 2.2.4. Let π : E → X be a G-torsor, F a locally quasi-affine G-space.
The X-scheme π

F
: E(F )→ X constructed above is called the fibre space associated

to F . It is characterized by the following property: Let p : X ′ → X be an fpqc map
such that E′ := EX′ is a trivial G-torsor, and θ : GX′ −→∼ E′ a trivialisation of E′.
Then there is an isomorphism of GX′ -spaces

θ
F

: FX′ −→∼ p∗E(F )

such that the GX′′-space automorphism p∗
1
θ−1
F
◦p∗

2
θ
F

of FX′′ (= p∗
i
FX′) is given by

(x′′, f) 7→ (x′′, gθ(x
′′)f).

Here gθ is the element in G(X ′′) defined in (??) or equivalently in (??). In other
words, gθ is the element such that the automorphism p∗

1
θ−1 ◦p∗

2
θ of the trivial

G-torsor GX′′ is described by (x′′, g) 7→ (x′′, gθ(x
′′)g).

From the argument given just above Definition 2.2.4 we have:

Proposition 2.2.5. The association F  E(F ) is a functor from the category of
locally quasi-affine G-spaces to the category of schemes over X.

Remark 2.2.6. If E → X is a trivial G-torsor, then clearly so is E(F ). Indeed, in
this case one may take X ′ = X and the matter is then clear.

2.3. Cartesian cube. Suppose p : X ′ → X is an fpqc map such that π′ : E′ → X ′

is trivial. Then, clearly, we have the identifications E′(F ) = p∗E(F ), and E′′(F ) =
p∗

1
E′(F ) = p∗

2
E′(F ). In fact we have a commutative cartesian cube, analogous

to—and arising from—diagram (??), namely

(2.3.1) E′(F )

π′F
��

qF // E(F )

πF

��

E′′(F )

qF
2

::uuuuuuuuu qF
1 //

π′′F

��

E′(F )

qF
;;vvvvvvvvv

π′F

��

X ′
p // X

X ′′

p
2

99tttttttttt p
1 // X ′

p

::uuuuuuuuuu
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with qF and qFi being the natural projections. From this the following result can
essentially be read off:

Proposition 2.3.2. The maps qF : E′(F ) → E(F ) and qFi : E′′(F ) → E′(F ),
i = 1, 2 are fpqc maps.

Proof. The maps p : X ′ → X and pi : X
′′ → X are fpqc. The result follows, since

(2.3.1) is a cartesian cube. �
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Verlag, New York, 1980.
[M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.


