
LECTURE 14

1. Characterisation of torsors

1.1. Facts from Lecture 13. Let f : Z → X be a G-equivariant map with G-
acting trivially onX. In our last lecture we showed that the following are equivalent:

• Z → X is a G-torsor.
• The map f is faithfully flat and fZ : ZZ = Z×XZ → Z is a trivial G-torsor.
• There exists a smooth surjective map T → X such that fT is a trivial
G-torsor.
• There exists an étale surjective map U → X such that fU : ZU → U is a

trivial G-torsor.

1.2. From the above following is immediate

Corollary 1.2.1. Let f : Z → X be a G-equivariant map with G-acting trivially
on X. The following are equivalent:

(a) Z → X is a G-torsor.
(b) There exists an fpqc-map T → X such that fT : ZT → T is a G-torsor.
(c) The map f is faithfully flat and fZ : ZZ = Z ×X Z → Z is a G-torsor.
(d) There exists a smooth surjective map T → X such that fT is a G-torsor.
(e) There exists an étale surjective map U → X such that fU : ZU → U is a

G-torsor.

Proof. The conditions (a) and (b) are equivalent because the composites of fpqc-
maps are again fpqc. From the result quoted, clearly (a) implies each of (c), (d)
and (e). And since smooth maps (and therefore also étale maps) are fpqc (in fact
fppf), and composites of fpqc-maps are fpqc, it is evident that (d) implies (a) as
does (e). Thus (a), (b), (d), and (e) are equivalent and (a) implies (c).

Now (c) implies that f is smooth, since it is so after a base change by a faithfully
flat map (namely the map f itself). Thus (b) implies (c). �

2. Transition elements and cocycles

The aim of this section is to find a natural 1-cocycle (or transition element) in
G(X ′′) arising from a trivialising fpqc-cover X ′ → X and the trivialization of E
over X ′.

2.1. Trivialisations revisited. We have seen that if π : E → X is a G-torsor,
and if e : X → E is a section then ψe : GX → E given by (x, g) 7→ e(x)g is a G-
equivariant isomorphism of X-schemes (for the right G-structure on GX). In other
words the section e gives us a trivialization ψe. Conversely, it is obvious that given
a trivialisation γ : GX −→∼ E of E 1, we have a section e : X → E corresponding
to the identity section of the group-scheme GX → X. It is easy to see that γ = ψe.
The two processes are evidently inverses of each other.
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1In other words, γ is a G-equivariant isomorphism of X-schemes.
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Let us agree to denote the identity element of the group G(S) by ε. Note that
ε : S → G is the identity section of the group scheme G→ S. If T ∈ Sch/S , let the

identity of G(T ) be denoted ε(T ). Note that ε(T ) is the composite T → S
ε−→ G.

Denote by εT the identity element of GT (T ). Clearly εT is the identity section of
the group-scheme GT → T . The section εT can also be regarded as the graph of
the map ε(T ) : T → G, i.e.,

εT = (1T , ε(T )).

In particular if t ∈ T (W ) and g ∈ G(W ) then

(2.1.1) (t, g) = εT (t)g.

The situation is summarized by the commutative square below (with the curves
arrows being sections):

(2.1.2) GT

��

// G

��
T

εT

II

//

ε(T )|||

>>|||

S

ε

VV

Finally note that by (2.1.1), for a section e : X → E of the torsor π : E → X,
the isomorphism ψe : GX −→∼ E has the alternate description:

(2.1.3) εX(x)g 7→ e(x)g.

Here, as usual, x is a valued point of X, g a valued point of G having the same
source as x.

Lemma 2.1.4. Let π : E → X be a G-torsor, and e1, e2 two sections of π. Then
there exists a unique element g12 ∈ G(X) such that

e2 = e1g12
.

Moreover, if ψ12 : GX −→∼ GX is the G-equivariant isomorphism of X-schemes 2

given by ψ
12

= ψ−1e1 ◦ψe2 then ψ
12

is described by (x, g) 7→ (x, g
12

(x)g) for valued
points x of X and g of G having the same source.

Proof. For the first part, since sections of π exist, E is trivial, and we may as well
assume, without loss of generality that E = GX . Now given an element g ∈ G(X),
its graph (1X , g) : X → GX gives a section of GX → X and all sections of GX → X
clearly arise this way. Thus ei = (1X , gi) for i = 1, 2, with g1 and g2 elements in
the group G(X). Take g

12
= g−11 g2. Clearly e2 = e1g12

. This proves the first part.
For the second part, keeping in mind (2.1.1), we have to show that ψ

12
is given

by
εX(x)g 7→ εX(x)g12(x)g

x and g are valued points of X and G respectively having the same source T . Using
(2.1.3) repeatedly, and (2.1.1) we have

ψ
12

(T )(εX(x)g) = (ψ−1e1 (T ) ◦ψe2(T ))(εX(x)g)

= ψ−1e1 (T )(e2(x)g)

= ψ−1e1 (T )(e1(x)g
12

(x)g)

= εX(x)g
12

(x)g,

2With respect to the right G-action on GX .
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as required. �

2.2. Cocycles. Let π : E → X be aG-torsor. Let p : X ′ → X be an fpqc-map such
that πX′ : EX′ → X ′ is a trivialG-torsor. Let X ′′ = X ′×XX ′ and p1, p2 : X ′′ ⇒ X ′.
We have a cartesian square:

(2.2.1) X ′′

�

p2 //

p
1

��

X ′

p

��
X ′

p
//// X

Set E′ := EX′ and E′′ := EX′′ and let π′ : E′ → X ′ and π′′ : E′′ → X ′′ be
the resulting base changes of π . Let q : E′ → E be the map lying over p, and
q1, q2 : E′′ ⇒ E′ the maps lying over p1, p2 : X ′′ ⇒ X ′. We have a commutative
cartesian cube (all six faces being cartesian) with the bottom square equal to (2.2.1)

(2.2.2) E′

π′

��

q // E

π

��

E′′

q2

=={{{{{{{{ q1 //

π′′

��

E′

q

>>}}}}}}}}

π′

��

X ′
p // X

X ′′

p
2

=={{{{{{{{ p
1 // X ′

p

>>}}}}}}}}

Note that the diagram summarizes a lot of data, including the identities E′ = p∗E
and E′′ = p∗

1
E′ = p∗

2
E′.

Next fix a a G-invariant isomorphism

θ : GX′ −→∼ E′.

(This is equivalent to fixing a section of π′ : E′ → X ′.) We have an isomorphism

(2.2.3) ϕ
θ

: p∗
2
GX′ −→∼ p∗

1
GX′

given by the formula

(2.2.4) ϕ
θ

= p∗
1
(θ)−1 ◦p∗

2
(θ).

We claim ϕ
θ

gives a descent datum. There are two ways of seeing this. The
first way is to note that E is in fact the descent of E′, for E′ = p∗E, and ϕ is the
natural descent data that arises from such a descent. The second way is simply an
elaboration of what was just said. Indeed, let X ′′′ = X ′×XX ′×XX ′, E′′′ = EX′′′ ,
and let p

12
, p

23
, and p

13
be the three projections X ′′′ → X ′′. The situation is



4 LECTURE 14

summarized by the commutative cartesian cube:

X ′′

p1
��

p
2 // X ′

p

��

X ′′′

p23

<<yyyyyyyy p
13 //

p12

��

X ′′

p2

=={{{{{{{{

p
1

��

X ′
p // X

X ′′

p
2

<<yyyyyyyy

p1
// X ′

p

=={{{{{{{{

We have to check that

(2.2.5) p∗
12

(ϕ
θ
) ◦p∗

23
(ϕ

θ
) = p∗

13
(ϕ

θ
).

This is easily verified by applying the formulas p∗
12
p∗

2
= p∗

23
p∗

1
, p∗

12
p∗

1
= p∗

13
p∗

1
, and

p∗
13
p∗

2
= p∗

23
p∗

2
, to the identity (2.2.4).

Note that

p∗
i
GX′ = GX′′ = X ′′ ×S G (i = 1, 2).

For each valued point x′′ : T → X ′′ of X ′′, we have an element gθ(x
′′) of the group

G(T ) such that ϕ
θ

: X ′′ ×S G → X ′′ ×S G is given at the level of valued-points
by (x′′, g) 7→ (x′′, gθ(x

′′)g). The map X ′′(T ) → G(T ) given by x′′ 7→ gθ(x
′′) is

functorial in T ∈ Sch/S , and hence we have a map of S-schemes:

(2.2.6) gθ : X ′′ → G.

There is another simpler description of gθ. The trivialisation θ corresponds to a
(unique) section e′ : X ′ → E′ of the torsor π′ : E′ → X ′. The maps p1 and p2
induce sections e′′1 and e′′2 of π′′ : E′′ → X ′′, with e′′i = (1X′′ , e′(pi)) for i = 1, 2.
Applying Lemma 2.1.4 we see that gθ ∈ G(X ′′) is the unique element satisfying the
equation e′′2 = e′′1gθ. Equivalently, gθ ∈ G(X ′′) is the unique element satisfying :

(2.2.7) e′(p
2
) = e′(p

1
)gθ.

For (i, j) ∈ {(1, 2), (2, 3), (1, 3)} we have maps gθ
ij

: X ′′′ → G given by

(2.2.8) gθ
ij

:= gθ ◦pij = gθ(pij ).

Now, the complete description of the map p∗
ij

(ϕ
θ
) : GX′′′ → GX′′′ from the valued-

points point of view is clearly:

(x′′′, g) 7→ (x′′′, gθij(x
′′′)g).

An immediate consequence of this description and the cocycle condition (2.2.5) is
the cocycle condition for the gθ

ij
’s, namely:

(2.2.9) gθ
12
gθ
23

= gθ
13
.



LECTURE 14 5

There is another way of describing (2.2.9). We point out that for (x1, x2, x3) ∈
X ′′′(T ) we have

gθ
12

(x1, x2, x3) = gθ(x1, x2),

gθ
23

(x1, x2, x3) = gθ(x2, x3),

gθ
13

(x1, x2, x3) = gθ(x1, x3),

and hence (2.2.9) amounts to saying

(2.2.10) gθ(x1, x3) = gθ(x1, x2)gθ(x2, x3)

for all valued points (x1, x2, x3) of X ′′′. Note that (2.2.7) is equivalent

e′(x2) = e′(x1)gθ(x1, x2)

for valued points (x1, x2) of X ′′. We thus have

e′(x1)gθ(x1, x3) = e′(x3)

= e′(x2)gθ(x2, x3)

= e′(x1)gθ(x1, x2)gθ(x2, x3).

Since the action of G(T ) on E′(T ) is free for every X ′-scheme T , we get (2.2.10),
whence (2.2.9).
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