
LECTURE 13

1. Basic Lemmas

1.1. Orbit maps and sections. Fix a G-equivariant map

(1.1.1) f : Z → X

where Z and X are S-schemes, with G-actions on them, and such that the action
on X is trivial. Suppose f has a section z : X → Z, i.e., an X-valued point of Z.
We then have a G-equivariant map (the orbit map)

(1.1.2) ψz : GX = X ×S G→ Z

given by (x, g) 7→ z(x)g for x and g valued points of X and G respectively and z(x)
the composite z ◦x.

Lemma 1.1.3. Let f : Z → X be as in (1.1.1). The following are equivalent:

(a) Z → X is a trivial G-torsor.
(b) There exists a section z : X → Z of f such that the resulting orbit map ψz

is an isomorphism.
(c) The set of sections of f is non-empty, and for every section z of f , the map

ψz is an isomorphism.

Proof. (a)⇒(c): Suppose Z → X is a trivial G-torsor. Without loss of generality we
may assume Z = GX and that f is the projection pX : GX → X. By Yoneda all we
have to show is that for every T ∈ Sch/X , the set theoretic map ψz(T ) : GX(T )→
GX(T ) is bijective. Indeed if x : T → X is an X-scheme, then ψz(T ) is the map
(x, g) 7→ (x, z(x)g) and this is clearly bijective since it amounts to the map on the
group GX(T ) given by left multiplication by (x, z(x)). There is a potential source
of confusion in reading the proof here and the next comment is to allay that. Since
GX is an X-scheme, as a functor GX is regarded as a functor on Sch/X—not on

Sch/S— and T is regarded as an object of Sch/X via T
x−→ X.

The remaining assertions, namely (c)⇒(b) and (b)⇒(a), are obvious. �

1.2. Torsors. In this subsection we give various criteria for checking when maps
as in (1.1.1) are torsors. We begin with the following basic lemma

Lemma 1.2.1. Let π : E → X be a G-torsor. Then π is affine, fpqc, and smooth.

Proof. Fix an fpqc-map u : T → X such that πT : ET → T is a trivial G-torsor.
Let v : ET → E be the base change of u. We therefore have a cartesian square

E

�π

��

ET
voo

π
T

��
X T

u
oo
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We remind the reader that G is an affine S-scheme and this is at the heart of
the matter. Since ET ∼= T ×S G as a T -scheme, and G is affine over S, one sees
that πT is an affine map. But u is faithfully flat. By a problem in the mid-term
exams, it follows that π is also affine.

In order to show π is fpqc, it is enough to show that it is faithfully flat, since
faithfully flat affine maps are fpqc. Now π is surjective since u and πT are. In
greater detail, π ◦v = u ◦πT is surjective, forcing π to be surjective. It remains
to show that π is flat. But this too has been done earlier using the fact that u is
faithfully flat.

Since π is flat, it is smooth if its fibres are smooth. Now a variety over a field
k is smooth if (and only if) its base change over an algebraic closure of k is non-
singular. The latter condition is equivalent to saying (by the Jacobian condition)
that the base change of the variety to any algebraically closed extension of k is
non-singular. Now the geometric fibres of πT are geometric fibres of π, and πT
is smooth. Moreover u is surjective and we are done. One can also prove the
smoothness of π by verifying the infinitesimal lifting property for π. Indeed πT has
the property and then one uses decent for fpqc-maps. �

Remark 1.2.2. It is not hard to see that a torsor is actually a geometric quotient.
The definition of such a quotient for S-schemes (rather than varieties over an al-
gebraically closed fields) is given by replacing the points in the classical definitions
with valued points, orbits by orbit maps, or more precisely by scheme theoretic
images of orbit maps for valued points, and fibres by fibres over valued points (i.e.,
by fibre products). We leave the details to the reader as an exercise in the functor
of points philosophy.

Lemma 1.2.3. A G-torsor π : E → X is trivial if an only if π has a section.

Proof. The “only if” part is obvious. We have to prove the “if” part. Let e : X → E
be a section of π. Let T → X be an fpqc-map such that πT : ET → T is trvial, and
let e

T
: T → ET be the base change of the section e. According to Lemma 1.1.3

the orbit map ψe
T

: GT → ET is an isomorphism. Consider the cartesian diagram

with fpqc horizontal maps (induced by T → X):

GX

�ψe

��

GToo

ψe
T

��
E EToo

Since the downward arrow on the right is an isomorphism and ET → E is faithfully
flat and quasi-compact, the downward arrow on the left is also an isomorphism (see
your mid-term exam problems). �

Theorem 1.2.4. Let f : Z → X be a G-equivariant map with G-acting trivially on
X. The following are equivalent:

(a) Z → X is a G-torsor.
(b) The map f is faithfully flat and fZ : ZZ = Z×XZ → Z is a trivial G-torsor.
(c) There exists a smooth surjective map T → X such that fT is a trivial

G-torsor.
(d) There exists an étale surjective map T → X such that fT : ZT → T is a

trivial G-torsor.
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Proof. (a)⇔(b): Assume (a). Note that fZ : ZZ = Z ×X Z → Z is a G-torsor
since we have shown in the previous lecture that the base change of a G-torsor is
again a G-torsor. It has a section, namely the diagonal section ∆: Z → Z ×X Z.
Now use Lemma 1.2.3 to see that (b) is true. For the converse, we assume (b) and
we note that f is smooth and affine (hence fpqc) since it is so after a base change
by a faithfully flat map (namely f itself). The statement (a) is obvious from the
definition of a G-torsor, since Z → X base changes to a trivial G-torsor when the
base is changed to Z via f .

(b)⇒(c): If f is as (b) then we have seen f is a torsor and therefore smooth by
Lemma 1.2.1. With T equal to the X-scheme Z, (c) is immediate from (b).

(c)⇒(d): Fix a point of x ∈ X. We can find an étale neighbourhood Ux of X
such that the base change TUx

→ Ux of T → X has a section (see Section ??). Let
U =

∐
x Ux. Then U → X is étale and surjective. The map TU → U has a section

ϕ : U → TU . Consider the map
U → T

given by the composite

U
ϕ−→ TU → T.

Since fT : ZT → T is a trivial G-torsor, so is fU : ZU → U .
(d)⇒(a) Obvious since étale surjective maps are fpqc.

�
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