
LECTURE 12

1. Preliminaries

We will work throughout with a base scheme S. The reader is free to regard S
as the spectrum of an algebraically closed field k. The category of S-schemes will
be denoted Sch/S . For the rest of this discussion fix a smooth S-group-scheme G
which is affine over S. By a G-space F we will mean an S-scheme F on which G
acts from the left. We decided to use the term G-space rather than G-scheme, for
the latter can be confused with an object of Sch/G. A locally quasi-affine G-space F
is a G-space such that F can be covered by G-stable open subschemes U such that
each such U is quasi-affine over S. This means that U is G-stable and if φ : U → S
is the structure map then the natural map of S-schemes U → Spec(φ∗OU ) is
an open immersion. Clearly G-spaces form a category with morphisms being G-
equivariant maps, and locally quasi-affine G-spaces form a full subcategory. One of
the motivations for these notes is to construct the fibre space E(F )→ X associated
with a G-torsor E → X. The construction is carried out in Subsection ?? (the
definition and characterizing property are given in (??)). Our construction uses
arbitrary trivialisations of the torsor E. The standard construction of E(F ) uses
E → X as the fpqc trivializing cover of E, and we deal with this in Subsection ??

2. Definitions

2.1. Group actions on schemes. Let X ∈ Sch/S . Then GX := X ×S G is a
smooth X-group-scheme. Note that we have a right action of G on GX :

(2.1.1) GX ×S G→ GX

given by

(2.1.2) ((x, g), g′) 7→ (x, gg′)

for “points” g, g′ of G and x of X all lying over the same point of S. In somewhat
greater detail, in (2.1.2), g, g′, and x are valued points, i.e., g, g′ : T → G and
x : T → X are S-maps. A standard functor of points argument (Yoneda Lemma)
then says that if in (2.1.2), g, g′, and x are arbitrary T -valued points over S, for
arbitrary T ∈ Sch/S , then we have actually defined a map GX ×S G → GX , and

this is our definition of (2.1.1)1.
We can generalize the idea above. Suppose f : Z → X is a map in Sch/S and

suppose the S-group-scheme G acts on Z (say from the right) in such a manner
that f is G-equivariant for the trivial action of G on X. Then for T ∈ Sch/X , if we
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1We will constantly use the functor of points technique, and will define maps of schemes by

their values on arbitrary “points”, with the caveat that these are arbitrary valued points, and
therefore do indeed define maps of schemes via the Yoneda Lemma.
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set ZT := T ×X Z, then there is a G action on ZT ,

(2.1.3) ZT ×S G→ ZT

described by

(2.1.4) ((t, z), g) 7→ (t, zg)

for t, z, and g points of T , Z, and G respectively. As usual, these are valued points
sharing the same source in Sch/S .

Remark 2.1.5. Note that (2.1.3) is equivalent to giving a GT -action on the T -
scheme ZT , and the resulting map

fT : ZT → T

is G-equivariant and GT -equivariant for the trivial G and GT actions on T . The
reader’s attention is drawn to the identification ZT ×T GT = ZT ×S G.

Definition 2.1.6. Let f : Z → X be as above. We say f is a trivial G-torsor if
there is a G-equivariant isomorphism of X-schemes:

(2.1.6.1) GX −→∼ Z.

We say f is a G-torsor if there exists an fpqc-map T → X such that the induced
map fT : ZT → T is a trivial G-torsor. If Z → X is a G-torsor (resp. trivial
G-torsor), we often say Z is a G-torsor (resp. trivial G-torsor) over X. Suppose
Z and Z ′ are G-torsors G. A morphism of G-torsors over X from Z to Z ′ is a
G-equivariant map of X-schemes Z → Z ′. In particular the diagram

Z

  @
@@

@@
@@

@
// Z ′

��
X

commutes.

Lemma 2.1.7. Let E → X be a G-torsor and let W → X be a map in Sch/S.
Then the map EW := W ×Z E →W is also a G-torsor.

Proof. If E → X is trivial then it is obvious that EW →W is trivial. If T → X is
fpqc, then so is the base change map TW = T ×S W → W . If ET → T is trivial,
then by our first observation, so it (ET )TW

→ TW . The result follows from the
identity (ET )TW

= (EW )TW
.

�

Remarks 2.1.8. 1) Recall that faithfully flat maps of affine schemes are always
fpqc since affine maps are always quasi-compact maps. Many theorems valid for
faithfully flat algebras A→ B remain true for fpqc maps. This is done by reducing
to the affine case. Here is an example of the technique: Let us prove that if
f : X → Y is a map of schemes then it is an isomorphism if it so after a base
change by an fpqc-map. So suppose first that u : T → Y is fpqc2, and the base

2The map u need not be fpqc in the sense of SGA—the quasi-compactness hypothesis need

not hold. We follow Vistoli [FGA-ICTP] and use the term for a larger class of maps, namely those
which are locally faithfully flat and quasi-compact, i.e. maps f : X → Y which are faithfully flat

and Y can be covered by affine open subschemes Vi with the property that for each i there is a

quasi-compact open subset Ui of X with f(Ui) = Vi. Some étale surjective maps need not be fpqc
in the SGA sense but always are in our sense. For example the disjoint union of an infinite étale

cover of Y would be fpqc in our sense but need not in the SGA sense.
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change map fT : XT := X ×Y T → T is an isomorphism. Faithful flatness of u
shows that f is affine since fT is (see the proof of Lemma ?? below for details).
So without loss of generality we may assume X and Y are affine and that T is
quasi-compact, and hence can be covered by a finite collection of open subsechemes
Uα. Let T ′ =

∐
α Uα. Clearly T ′ is an affine scheme, for the number of Uα is finite.

Moreover the natural map T ′ → T is faithfully flat, and hence we have a faithfully

flat map u′ : T ′ → Y given by the composite T ′ → T
f−→ Y . Replace u with u′ and

we are now completely in the affine situation where the statement is well-known.
2) Some statements for faithfully flat maps of rings A→ B carry over to faithfully

flat map of schemes f : X → Y without the extra assumption that f is fpqc.
Suppose C • is a complex of quasi-coherent sheaves on Y such that f∗C • is exact.
We claim that C • is exact. The statement is well known when X and Y are affine.
In this instance, by localizing at points of Y , we may assume Y is the spectrum of a
local ring A. The closed point of Y has a preimage x in X, since f is faithfully flat
and therefore surjective by definition. Let B = OX,x, and we can replace X → Y
by SpecB → Y while retaining the hypothesis on the pull-back of C •. The map
A→ B is faithfully flat and we are done.

3) In much the same way as above, one can show that if f∗F = 0 for F a
quasi-coherent sheaf on Y , then F = 0 (f : X → Y faithfully flat). Simpler still,
investigate the exactness of the complex 0→ F → 0 by examining it on X (see (2)
above).

3. Smooth Maps

Let us quickly recall some basic facts about smooth maps. Suppose X → S
is smooth of relative dimension n and x is a point on X. We can find an open
neighbourhood U of x in X and an étale map U → AnS such that the diagram

U

  A
AA

AA
AA

A
// AnS

��
S

commutes. The algorithm for this (without proofs) is as follows: Without loss of
generality we may assume x is closed in its fibre over S, for any open set containing
a specialization of x will also contain x. Let s ∈ S be the image of x and Xs the
fibre of X → S over s. Write x̄ ∈ Xs for the point corresponding to x. Let R be
the local ring at x and R̄ the local ring at x̄. Pick elements t1, . . . , tn ∈ R such
that their images in R̄ form a regular system of parameters for R̄. The elements
t1, . . . , tn are regular functions (over S) in an open neighbourhood W of x, and
so define an S-map W → AnS . This map is étale at x, and so we can find a U as
required.

Now suppose s ∈ S. Pick x ∈ X which is closed in the fibre over s. We
wish to show that there is an étale open neighbourhood V of s such that X → S
has a section over V passing through x. More precisely, we can find a section of
XV := V ×Y X → V which passes through all points in the inverse image of x in
XV . Clearly AnS → S is a (smooth) map which has sections (e.g. the so-called zero
section). Let σ : S → AnS be a such a section. Then σ is a closed immersion. Let
V be the fibre product of σ : S → AnS and U → AnS , and consider the commutative
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diagram:

V

�

//

��

U

��
S

σ
//

AA
AA

AA
AA

AA
AA

AA
AA

AnS

��
S

It is evident that the map XV := V ×S X → V has a section, for XU → U has one
(namely, the restriction of the diagonal X → X ×S X to U). Clearly, this section
passes through all the points in the fibre over x of the map XV → X.
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Springer, New York (1971).
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phismesn de schémas II, Publ. Math. IHES 24(1965).
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