LECTURE 11

1. Right actions and Prinicipal Bundles

1.1. Problems on Principal Bundles. In this subsection, we work with the clas-
sical notion of a topological space (i.e., not with Grothendieck topologies) and all
topological spaces and topological groups that occur are Hausdorff. All group ac-
tions of a topological group on a topological space will be assumed to be continuous.

We will deal throughout with a topological group G which acts on the right on
a topological space Z, and with a map

f+Z—-X
which is G-equivariant for the trivial action of G on X. We call such an f: Z — X
a (G-space over X, and often simply call Z a G-space over X. Set
GX =X xG
and let
TX - GX — X
be the first projection. Note that g(z,g’) = (z, gg’) gives a left action on Gx and
((x,9")g = (x,¢'g) a right action on Gx. The space Gx with its right action is
clearly G-space over X.
We say f: Z — X is a trivial G-space over X if there is a G-equivariant isomor-
phism (for the right G-action on Gx)
0: GX = Z
such that
0o f =TX.
Clearly if Z trivial G-space over X then it is a principal bundle over X, in fact the

trivial principal bundle.

Proposition 1.1.1. Let u: W — X be a continuous map and set Zy := Z xx W.
Let fw: Zw — W and v: Zw — Z be the natural maps. Then G acts naturally
on the right on Zy in such a way that it is a G-space over W and such that v is
G-equivariant.

Proof. Part of your mid-term exam. (I

Proposition 1.1.2. Suppose % = {U,} is an open cover of X, and Zy, is a
trivial G-space over U, for each a. Then f: Z — X has the natural structure of
a principal G-bundle such that the right G-action on Z induced by the principal
bundle is the given G-action on Z.

Proof. Part of your mid-term exam O
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Proposition 1.1.3. Suppose the G-action on Z is the one induced by a principal
G-bundle structure on f: Z — X. Let u: W — X be a continuous map. Then
fw: Zw — W has a natural structure of a principal G-bundle such that the result-
ing right G-action on Zy is the same as the one induced by the right G-action on
Z as in Proposition 1.1.1.

Proof. Part of your mid-term exam O

Proposition 1.1.4. Consider & := Z; = Z X x Z, and the induced map fz: Z —
Z. Define
V. GZ — %
by (2, 9) — (2, 29), 2 € Z, g € G. Then
(1) U is G-equivariant for the right G-actions on both spaces.
(2) fZ oV = TZ.
3) If f: Z = X is a principal G-bundle (such that the induced right G-action
is the given one) then ¥ is an isomorphism.
(4) Suppose f: Z — X has local sections, i.e., around each point x € X there
is an open neighborhood such that the restriction f~'U, — U, of f has a
section. Suppose further that ¥ is an isomorphism. Then f: Z — X is a
principal bundle and the right G-action on Z induced by its principal bundle
structure is the given right G-action on it.

Proof. Part of your mid-term exam. O

2. The Functor of points

2.1. Schemes over S as functors. For any category %, let % be the category of
contravariant (Sets)-valued functors on %. Recall that this means that an object

F of € is a functor

F:%° — (Sets)
and given two such functors F' and G, a morphism from F to G is a natural
transformation (or, what is the same thing, a functorial map)

F—G.
For the rest of these notes, fix a scheme S, and set ¢":= Sch,5. Let X be scheme
over S. Define the “functor of points” on X to be the functor on Sch,g
hx: (Schyg)® — (Sets)
given by
T+ Homgen o (T, X) (T € Schyg),
with an obvious effect on morphisms ¢: 7" — T in Sch,g, namely,
qr>qop
for ¢ € hx(T) = Homgen (T, X)). Note that hx € % for every X € Schyg.
Next, if f: X — Y is a map in Sch/g then
f o () : Homgch/s (T, X) — Homgch/s (T, Y)
defined by composing (on the left) with f, is functorial in 7. Hence we get a map
in %
hf: hX — hy.
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It is trivial to check that for a pair of maps in Sch,g

xLhy 4z

hx —>
h(Jk /
commutes. In other words the association
(2.1.1) h(y: Sch/s — €
defines a functor.

The process f +— hy (for f: X — Y a map of S-schemes) can be “reversed”.
More precisely, given a map ¢: hx — hy in € (X and Y in Sch/s), we can
find a unique map f = f,: X — Y such that ¢y = hy. Indeed, we have a map
of sets Y(X): hx(X) — h(Y), and hence we have an element fy, € hx(Y) =
Homsen (X,Y) defined by the image of 1x € hx(X) = Homgen (X, X) under
P(X). Itis easy to see that hy, = 1. It is equally easy to see—from the definitions—
that if f: X — Y is a map in Sch/g and ¢: hx — hy is defined by ¢ = hy, then
fo = f (ie, fn, = f). Thus f + hy and ¢ > fy are inverse processes. This can
be restated in the following compact form:

(2.1.2) hx( ) Homgch/S(T X) —~» Homg (hT, hx)

Another way of saying this is that Sch/g can be regarded as a full subcategory of

€ via the functor h(.y (see Theorem 2.1.4 below).
The isomorphism in (2.1.2) can be extended—as we will see below—to give an
isomorphism of sets:

(2.1.3) F(T) = Hom_(hr, F).

Indeed, given £ € F/(T'), and W € Sch/g, we can define 0¢(W): he (W) — F(W)
as follows: Let f: W — T be an element of hp(W). Writing f* = F(f), we have
[*: F(T) — F(W). The map 0¢(W) is defined by f — f*(£). It is easy to see
that 0¢ (W) is functorial in W € Sch /g, whence we have a natural transformation
O¢: hp — F. The association { — 0¢ gives us a map F(T) — Homg(hr, F).

the diagram

Conversely, given a map 6: hy — F in ‘2, we get an element & € F(T ) defined
as the image of 17 € hp(T) = Homgen (7, T') in F(T') under 6(T): hr(T) —
F(T). One checks, in the usual way, that f¢, = 0 and &, = &, whence we get the
isomorphism (2.1.3).

The isomorphisms (2.1.2) and (2.1.3) are often referred to as the Yoneda lemmas.
They are best summarized as a statement, namely:

Theorem 2.1.4. (Yoneda)
(a) The functor h(y: Schys — 3 of (2.1.1) is a fully faithful embedding of

Schys into €.
(b) Given T € Sch;s and F: (Sch;s)° — (Sets) a functor, and identifying

T with hy € € via part (a), we have a one-to-one correspondence between
F(T) and maps T — F in €.
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From now on we will identify 7" € Sch,g with Az, and we will treat the isomor-
phism (2.1.3) as an identity. Thus, with these identifications, we have

(2.1.5) Hom, (T, F) = F(T) (T € Schys, F € 6).
This should be compared with the special case Homgen (T, X) = X(T').

Remark 2.1.6. The alert reader would have recognized that in the proof of Theo-
rem 2.1.4, the category Sch, 5 played no essential role, and could have been replaced
by an arbitray category %.

2.2. The structural morphism for objects in %. Recall that we are working
with schemes over a fixed ambient scheme S. When we write X € Sch,g we are
really using a shorthand for (X — S) € Sch/g. The map X — S is often called the
structural map or sometimes just the structure map. If S = Spec A is affine, we call
X € Sch/g an A-scheme rather than an S-scheme and often write Sch, 4 instead of
SCh/S.

Given an S-scheme X, note that hg(X) is a singleton set whose only element is
the structural map X — S. For F € %, we have a natural map F' — hg namely
the map such that for X € Sch/g, the induced map F(X) — hg(X) is the map
sending all elements of F'(X) to the only element of hg(X). It is clear that this (as
X varies in Sch/g) is functorial in X. Identifying (as we have agreed to) hs with
S, we thus have a map

(2.2.1) F— S

which we call the structural map for F'. In the event the object F' of % lies in the
smaller category Sch,g, clearly the above notion of the structural map coincides
with the notion defined for schemes over S.
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