LECTURE 11

1. Right actions and Prinicipal Bundles

1.1. **Problems on Principal Bundles.** In this subsection, we work with the classical notion of a topological space (i.e., not with Grothendieck topologies) and all topological spaces and topological groups that occur are Hausdorff. All group actions of a topological group on a topological space will be assumed to be continuous.

We will deal throughout with a topological group G which acts on the right on a topological space Z, and with a map

$$f: Z \to X$$

which is G-equivariant for the trivial action of G on X. We call such an $f: Z \to X$ a G-space over X, and often simply call Z a G-space over X. Set

$$G_X = X \times G$$

and let

$$\pi_X \colon G_X \to X$$

be the first projection. Note that g(x,g') = (x,gg') gives a left action on G_X and ((x,g')g = (x,g'g) a right action on G_X . The space G_X with its right action is clearly G-space over X.

We say $f: Z \to X$ is a *trivial* G-space over X if there is a G-equivariant isomorphism (for the right G-action on G_X)

$$\theta \colon G_X \xrightarrow{\sim} Z$$

such that

$$\theta \circ f = \pi_X.$$

Clearly if Z trivial G-space over X then it is a principal bundle over X, in fact the trivial principal bundle.

Proposition 1.1.1. Let $u: W \to X$ be a continuous map and set $Z_W := Z \times_X W$. Let $f_W: Z_W \to W$ and $v: Z_W \to Z$ be the natural maps. Then G acts naturally on the right on Z_W in such a way that it is a G-space over W and such that v is G-equivariant.

Proof. Part of your mid-term exam.

Proposition 1.1.2. Suppose $\mathscr{U} = \{U_{\alpha}\}$ is an open cover of X, and $Z_{U_{\alpha}}$ is a trivial G-space over U_{α} for each α . Then $f: Z \to X$ has the natural structure of a principal G-bundle such that the right G-action on Z induced by the principal bundle is the given G-action on Z.

Proof. Part of your mid-term exam

Date: October 1, 2012.

Proposition 1.1.3. Suppose the G-action on Z is the one induced by a principal G-bundle structure on $f: Z \to X$. Let $u: W \to X$ be a continuous map. Then $f_W: Z_W \to W$ has a natural structure of a principal G-bundle such that the resulting right G-action on Z_W is the same as the one induced by the right G-action on Z as in Proposition 1.1.1.

Proof. Part of your mid-term exam

Proposition 1.1.4. Consider $\mathscr{Z} := Z_Z = Z \times_X Z$, and the induced map $f_Z : \mathscr{Z} \to Z$. Define

$$\Psi\colon G_Z\to\mathscr{Z}$$

by $(z, g) \mapsto (z, zg), z \in Z, g \in G$. Then

- (1) Ψ is G-equivariant for the right G-actions on both spaces.
- (2) $f_Z \circ \Psi = \pi_Z$.
- (3) If $f: Z \to X$ is a principal G-bundle (such that the induced right G-action is the given one) then Ψ is an isomorphism.
- (4) Suppose f: Z → X has local sections, i.e., around each point x ∈ X there is an open neighborhood such that the restriction f⁻¹U_x → U_x of f has a section. Suppose further that Ψ is an isomorphism. Then f: Z → X is a principal bundle and the right G-action on Z induced by its principal bundle structure is the given right G-action on it.

Proof. Part of your mid-term exam.

2. The Functor of points

2.1. Schemes over S as functors. For any category \mathscr{C} , let $\widehat{\mathscr{C}}$ be the category of contravariant (Sets)-valued functors on \mathscr{C} . Recall that this means that an object F of $\widehat{\mathscr{C}}$ is a functor

$$F: \mathscr{C}^{\circ} \to (\text{Sets})$$

and given two such functors F and G, a morphism from F to G is a natural transformation (or, what is the same thing, a functorial map)

$$F \to G$$
.

For the rest of these notes, fix a scheme S, and set $\mathscr{C} := \mathbb{S}ch_{/S}$. Let X be scheme over S. Define the "functor of points" on X to be the functor on $\mathbb{S}ch_{/S}$

$$h_X: (Sch_{/S})^{\circ} \to (Sets)$$

given by

$$T \mapsto \operatorname{Hom}_{\operatorname{Sch}_{/S}}(T, X) \qquad (T \in \operatorname{Sch}_{/S}),$$

with an obvious effect on morphisms $\varphi \colon T' \to T$ in Sch_{S} , namely,

$$q\mapsto q\circ\varphi$$

for $q \in h_X(T) = \operatorname{Hom}_{\operatorname{Sch}_{/S}}(T, X)$). Note that $h_X \in \widehat{\mathscr{C}}$ for every $X \in \operatorname{Sch}_{/S}$. Next, if $f: X \to Y$ is a map in $\operatorname{Sch}_{/S}$ then

$$f \circ (\cdot) \colon \operatorname{Hom}_{\operatorname{Sch}_{/S}}(T, X) \to \operatorname{Hom}_{\operatorname{Sch}_{/S}}(T, Y)$$

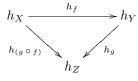
defined by composing (on the left) with f, is functorial in T. Hence we get a map in $\widehat{\mathscr{C}}$

$$h_f \colon h_X \to h_Y.$$

It is trivial to check that for a pair of maps in $Sch_{/S}$

$$X \xrightarrow{f} Y \xrightarrow{g} Z,$$

the diagram



commutes. In other words the association

 $(2.1.1) h_{(\cdot)} \colon \operatorname{Sch}_{/S} \to \widehat{\mathscr{C}}$

defines a functor.

The process $f \mapsto h_f$ (for $f: X \to Y$ a map of S-schemes) can be "reversed". More precisely, given a map $\psi: h_X \to h_Y$ in $\widehat{\mathscr{C}}$ (X and Y in $\mathrm{Sch}_{/S}$), we can find a unique map $f = f_{\psi}: X \to Y$ such that $\psi = h_f$. Indeed, we have a map of sets $\psi(X): h_X(X) \to h(Y)$, and hence we have an element $f_{\psi} \in h_X(Y) = \mathrm{Hom}_{\mathrm{Sch}_{/S}}(X, Y)$ defined by the image of $\mathbf{1}_X \in h_X(X) = \mathrm{Hom}_{\mathrm{Sch}_{/S}}(X, X)$ under $\psi(X)$. It is easy to see that $h_{f_{\psi}} = \psi$. It is equally easy to see—from the definitions—that if $f: X \to Y$ is a map in $\mathrm{Sch}_{/S}$ and $\psi: h_X \to h_Y$ is defined by $\psi = h_f$, then $f_{\psi} = f$ (i.e., $f_{h_f} = f$). Thus $f \mapsto h_f$ and $\psi \mapsto f_{\psi}$ are inverse processes. This can be restated in the following compact form:

$$(2.1.2) h_X(T) = \operatorname{Hom}_{\operatorname{Sch}_{/S}}(T, X) \xrightarrow{\sim} \operatorname{Hom}_{\widehat{\mathscr{C}}}(h_T, h_X).$$

Another way of saying this is that Sch_{S} can be regarded as a full subcategory of $\widehat{\mathscr{C}}$ via the functor $h_{(.)}$ (see Theorem 2.1.4 below).

The isomorphism in (2.1.2) can be extended—as we will see below—to give an isomorphism of sets:

(2.1.3)
$$F(T) \xrightarrow{\sim} \operatorname{Hom}_{\widehat{\omega}}(h_T, F).$$

Indeed, given $\xi \in F(T)$, and $W \in \operatorname{Sch}_{S}$, we can define $\theta_{\xi}(W) \colon h_T(W) \to F(W)$ as follows: Let $f \colon W \to T$ be an element of $h_T(W)$. Writing $f^* = F(f)$, we have $f^* \colon F(T) \to F(W)$. The map $\theta_{\xi}(W)$ is defined by $f \mapsto f^*(\xi)$. It is easy to see that $\theta_{\xi}(W)$ is functorial in $W \in \operatorname{Sch}_{S}$, whence we have a natural transformation $\theta_{\xi} \colon h_T \to F$. The association $\xi \mapsto \theta_{\xi}$ gives us a map $F(T) \to \operatorname{Hom}_{\widehat{\mathscr{C}}}(h_T, F)$. Conversely, given a map $\theta \colon h_T \to F$ in $\widehat{\mathscr{C}}$, we get an element $\xi_{\theta} \in F(T)$ defined as the image of $\mathbf{1}_T \in h_T(T) = \operatorname{Hom}_{\operatorname{Sch}_{S}}(T, T)$ in F(T) under $\theta(T) \colon h_T(T) \to$ F(T). One checks, in the usual way, that $\theta_{\xi_{\theta}} = \theta$ and $\xi_{\theta_{\xi}} = \xi$, whence we get the isomorphism (2.1.3).

The isomorphisms (2.1.2) and (2.1.3) are often referred to as the Yoneda lemmas. They are best summarized as a statement, namely:

Theorem 2.1.4. (Yoneda)

- (a) The functor $h_{(\cdot)} \colon \mathbb{S}ch_{/S} \to \widehat{\mathscr{C}}$ of (2.1.1) is a fully faithful embedding of $\mathbb{S}ch_{/S}$ into $\widehat{\mathscr{C}}$.
- (b) Given $T \in Sch_{/S}$ and $F: (Sch_{/S})^{\circ} \to (Sets)$ a functor, and identifying T with $h_T \in \widehat{\mathscr{C}}$ via part (a), we have a one-to-one correspondence between F(T) and maps $T \to F$ in $\widehat{\mathscr{C}}$.

LECTURE 11

From now on we will identify $T \in Sch_{/S}$ with h_T , and we will treat the isomorphism (2.1.3) as an identity. Thus, with these identifications, we have

(2.1.5) $\operatorname{Hom}_{\widehat{\mathscr{C}}}(T, F) = F(T) \qquad (T \in \operatorname{Sch}_{/S}, F \in \widehat{\mathscr{C}}).$

This should be compared with the special case $\operatorname{Hom}_{\operatorname{Sch}_{S}}(T, X) = X(T)$.

Remark 2.1.6. The alert reader would have recognized that in the proof of Theorem 2.1.4, the category $Sch_{/S}$ played no essential role, and could have been replaced by an arbitray category \mathscr{C} .

2.2. The structural morphism for objects in $\widehat{\mathscr{C}}$. Recall that we are working with schemes over a fixed ambient scheme S. When we write $X \in Sch_{/S}$ we are really using a shorthand for $(X \to S) \in Sch_{/S}$. The map $X \to S$ is often called the *structural map* or sometimes just the *structure map*. If S = Spec A is affine, we call $X \in Sch_{/S}$ an A-scheme rather than an S-scheme and often write $Sch_{/A}$ instead of $Sch_{/S}$.

Given an S-scheme X, note that $h_S(X)$ is a singleton set whose only element is the structural map $X \to S$. For $F \in \widehat{\mathscr{C}}$, we have a natural map $F \to h_S$ namely the map such that for $X \in \operatorname{Sch}_{/S}$, the induced map $F(X) \to h_S(X)$ is the map sending all elements of F(X) to the only element of $h_S(X)$. It is clear that this (as X varies in $\operatorname{Sch}_{/S}$) is functorial in X. Identifying (as we have agreed to) h_S with S, we thus have a map

which we call the structural map for F. In the event the object F of \mathscr{C} lies in the smaller category $Sch_{/S}$, clearly the above notion of the structural map coincides with the notion defined for schemes over S.

References

- [FGA] A. Grothendieck, Fondements de la Géométrie Algébrique, Sém, Bourbaki, exp. no[°] 149 (1956/57), 182 (1958/59), 190 (1959/60), 195(1959/60), 212 (1960/61), 221 (1960/61), 232 (1961/62), 236 (1961/62), Benjamin, New York, (1966).
- [EGA] _____ and J. Dieudonné, Élements de géométrie algébrique I, Grundlehren Vol 166, Springer, New York (1971).
- [EGA I] _____, Élements de géométrie algébrique I. Le langage des schémas, Publ. Math. IHES 4 (1960).
- [EGA II] _____, Élements de géométrie algébrique II. Etude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961).
- [EGA III₁] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents I, Publ. Math. IHES 11 (1961).
- [EGA III₂] _____, Élements de géométrie algébrique III. Etude cohomologique des faisceaux cohérents II, Publ. Math. IHES 17 (1963).
- [EGA IV₁] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas I, Publ. Math. IHES 20 (1964).
- [EGA IV₂] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas II, Publ. Math. IHES 24(1965).
- [EGA IV₃] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas III, Publ. Math. IHES 28(1966).
- [EGA IV₄] _____, Élements de géométrie algébrique IV. Études locale des schémas et des morphismesn de schémas IV, Publ. Math. IHES 32(1967).
- [SGA 1] A. Grothendieck, et al., Séminaire de Géometrie Algébrique. Revetments Étales et Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York (1971).

4

LECTURE 11

- [FGA-ICTP] B. Fantechi, L. Göttsche, L. Illusie, S.L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry, Grothendieck's FGA explained, Math. Surveys and Monographs, Vol 123, AMS (2005).
- [BLR] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Ergebnisse Vol 21, Springer-Verlag, New York, 1980.
- [M] H. Matsumura, Commutative Ring Theory, Cambridge Studies 89.