
LECTURE 11

1. Right actions and Prinicipal Bundles

1.1. Problems on Principal Bundles. In this subsection, we work with the clas-
sical notion of a topological space (i.e., not with Grothendieck topologies) and all
topological spaces and topological groups that occur are Hausdorff. All group ac-
tions of a topological group on a topological space will be assumed to be continuous.

We will deal throughout with a topological group G which acts on the right on
a topological space Z, and with a map

f : Z → X

which is G-equivariant for the trivial action of G on X. We call such an f : Z → X
a G-space over X, and often simply call Z a G-space over X. Set

GX = X ×G

and let

πX : GX → X

be the first projection. Note that g(x, g′) = (x, gg′) gives a left action on GX and
((x, g′)g = (x, g′g) a right action on GX . The space GX with its right action is
clearly G-space over X.

We say f : Z → X is a trivial G-space over X if there is a G-equivariant isomor-
phism (for the right G-action on GX)

θ : GX −→∼ Z

such that

θ ◦f = πX .

Clearly if Z trivial G-space over X then it is a principal bundle over X, in fact the
trivial principal bundle.

Proposition 1.1.1. Let u : W → X be a continuous map and set ZW := Z ×XW .
Let fW : ZW → W and v : ZW → Z be the natural maps. Then G acts naturally
on the right on ZW in such a way that it is a G-space over W and such that v is
G-equivariant.

Proof. Part of your mid-term exam. �

Proposition 1.1.2. Suppose U = {Uα} is an open cover of X, and ZUα is a
trivial G-space over Uα for each α. Then f : Z → X has the natural structure of
a principal G-bundle such that the right G-action on Z induced by the principal
bundle is the given G-action on Z.

Proof. Part of your mid-term exam �
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Proposition 1.1.3. Suppose the G-action on Z is the one induced by a principal
G-bundle structure on f : Z → X. Let u : W → X be a continuous map. Then
fW : ZW →W has a natural structure of a principal G-bundle such that the result-
ing right G-action on ZW is the same as the one induced by the right G-action on
Z as in Proposition 1.1.1.

Proof. Part of your mid-term exam �

Proposition 1.1.4. Consider Z := ZZ = Z×X Z, and the induced map fZ : Z →
Z. Define

Ψ: GZ → Z

by (z, g) 7→ (z, zg), z ∈ Z, g ∈ G. Then

(1) Ψ is G-equivariant for the right G-actions on both spaces.
(2) fZ ◦Ψ = πZ .
(3) If f : Z → X is a principal G-bundle (such that the induced right G-action

is the given one) then Ψ is an isomorphism.
(4) Suppose f : Z → X has local sections, i.e., around each point x ∈ X there

is an open neighborhood such that the restriction f−1Ux → Ux of f has a
section. Suppose further that Ψ is an isomorphism. Then f : Z → X is a
principal bundle and the right G-action on Z induced by its principal bundle
structure is the given right G-action on it.

Proof. Part of your mid-term exam. �

2. The Functor of points

2.1. Schemes over S as functors. For any category C , let Ĉ be the category of
contravariant (Sets)-valued functors on C . Recall that this means that an object

F of Ĉ is a functor

F : C ◦ → (Sets)

and given two such functors F and G, a morphism from F to G is a natural
transformation (or, what is the same thing, a functorial map)

F → G.

For the rest of these notes, fix a scheme S, and set C := Sch/S . Let X be scheme
over S. Define the “functor of points” on X to be the functor on Sch/S

hX : (Sch/S)
◦ → (Sets)

given by

T 7→ HomSch/S (T, X) (T ∈ Sch/S),

with an obvious effect on morphisms ϕ : T ′ → T in Sch/S , namely,

q 7→ q ◦ϕ

for q ∈ hX(T ) = HomSch/S (T, X)). Note that hX ∈ Ĉ for every X ∈ Sch/S .
Next, if f : X → Y is a map in Sch/S then

f ◦ (·) : HomSch/S (T, X)→ HomSch/S (T, Y )

defined by composing (on the left) with f , is functorial in T . Hence we get a map

in Ĉ
hf : hX → hY .
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It is trivial to check that for a pair of maps in Sch/S

X
f−→ Y

g−→ Z,

the diagram

hX
hf //

h(g ◦ f) !!B
BB

BB
BB

B hY

hg~~||
||
||
||

hZ

commutes. In other words the association

(2.1.1) h(·) : Sch/S → Ĉ

defines a functor.
The process f 7→ hf (for f : X → Y a map of S-schemes) can be “reversed”.

More precisely, given a map ψ : hX → hY in Ĉ (X and Y in Sch/S), we can
find a unique map f = fψ : X → Y such that ψ = hf . Indeed, we have a map
of sets ψ(X) : hX(X) → h(Y ), and hence we have an element fψ ∈ hX(Y ) =
HomSch/S (X, Y ) defined by the image of 1X ∈ hX(X) = HomSch/S (X, X) under

ψ(X). It is easy to see that hfψ = ψ. It is equally easy to see—from the definitions—
that if f : X → Y is a map in Sch/S and ψ : hX → hY is defined by ψ = hf , then
fψ = f (i.e., fhf = f). Thus f 7→ hf and ψ 7→ fψ are inverse processes. This can
be restated in the following compact form:

(2.1.2) hX(T ) = HomSch/S (T, X) −→∼ HomĈ (hT , hX).

Another way of saying this is that Sch/S can be regarded as a full subcategory of

Ĉ via the functor h(·) (see Theorem 2.1.4 below).
The isomorphism in (2.1.2) can be extended—as we will see below—to give an

isomorphism of sets:

(2.1.3) F (T ) −→∼ HomĈ (hT , F ).

Indeed, given ξ ∈ F (T ), and W ∈ Sch/S , we can define θξ(W ) : hT (W ) → F (W )
as follows: Let f : W → T be an element of hT (W ). Writing f∗ = F (f), we have
f∗ : F (T ) → F (W ). The map θξ(W ) is defined by f 7→ f∗(ξ). It is easy to see
that θξ(W ) is functorial in W ∈ Sch/S , whence we have a natural transformation
θξ : hT → F . The association ξ 7→ θξ gives us a map F (T ) → HomĈ (hT , F ).

Conversely, given a map θ : hT → F in Ĉ , we get an element ξθ ∈ F (T ) defined
as the image of 1T ∈ hT (T ) = HomSch/S (T, T ) in F (T ) under θ(T ) : hT (T ) →
F (T ). One checks, in the usual way, that θξθ = θ and ξθξ = ξ, whence we get the
isomorphism (2.1.3).

The isomorphisms (2.1.2) and (2.1.3) are often referred to as the Yoneda lemmas.
They are best summarized as a statement, namely:

Theorem 2.1.4. (Yoneda)

(a) The functor h(·) : Sch/S → Ĉ of (2.1.1) is a fully faithful embedding of

Sch/S into Ĉ .
(b) Given T ∈ Sch/S and F : (Sch/S) ◦ → (Sets) a functor, and identifying

T with hT ∈ Ĉ via part (a), we have a one-to-one correspondence between

F (T ) and maps T → F in Ĉ .
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From now on we will identify T ∈ Sch/S with hT , and we will treat the isomor-
phism (2.1.3) as an identity. Thus, with these identifications, we have

(2.1.5) HomĈ (T, F ) = F (T ) (T ∈ Sch/S , F ∈ Ĉ ).

This should be compared with the special case HomSch/S (T, X) = X(T ).

Remark 2.1.6. The alert reader would have recognized that in the proof of Theo-
rem 2.1.4, the category Sch/S played no essential role, and could have been replaced
by an arbitray category C .

2.2. The structural morphism for objects in Ĉ . Recall that we are working
with schemes over a fixed ambient scheme S. When we write X ∈ Sch/S we are
really using a shorthand for (X → S) ∈ Sch/S . The map X → S is often called the
structural map or sometimes just the structure map. If S = SpecA is affine, we call
X ∈ Sch/S an A-scheme rather than an S-scheme and often write Sch/A instead of
Sch/S .

Given an S-scheme X, note that hS(X) is a singleton set whose only element is

the structural map X → S. For F ∈ Ĉ , we have a natural map F → hS namely
the map such that for X ∈ Sch/S , the induced map F (X) → hS(X) is the map
sending all elements of F (X) to the only element of hS(X). It is clear that this (as
X varies in Sch/S) is functorial in X. Identifying (as we have agreed to) hS with
S, we thus have a map

(2.2.1) F → S

which we call the structural map for F . In the event the object F of Ĉ lies in the
smaller category Sch/S , clearly the above notion of the structural map coincides
with the notion defined for schemes over S.
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Groupe Fondamental, Lect. Notes. Math. 224, Springer, Berlin-Heidelberg-New York
(1971).



LECTURE 11 5
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