LECTURE 10

Our assumptions, conventions and notations are as in Lecture 9. In particular G is a topological group, and all topological spaces that occur (including G) are Hausdorff and all group actions of G on a topological space are continuous unless otherwise stated.

1. Morphisms of fibre bundles with structure groups

1.1. Suppose $\pi: \mathscr{F} \to X$ and $\pi': \mathscr{F}' \to X$ are fibre bundles with fibres F and structure group G. A morphism $\mathscr{F} \to \mathscr{F}'$ of fibre bundles with fibre F and structure group G is a continuous map $\phi: \mathscr{F} \to \mathscr{F}'$ such that $\pi' \circ \phi = \pi$ satisfying the following requirements: There is a common trivializing cover $\mathscr{U} = \{U_{\alpha}\}$ for $\mathscr{F} \to X$ and $\mathscr{F}' \to X$, with trivializing maps

$$\theta_{\alpha} \colon U_{\alpha} \times F \to \pi^{-1}(U_{\alpha})$$

and

$$\theta'_{\alpha}: U_{\alpha} \times F \to {\pi'}^{-1}(U_{\alpha})$$

for each index α such that the restriction

$$\pi^{-1}(U_{\alpha}) \xrightarrow{\operatorname{via} \phi} {\pi'}^{-1}(U_{\alpha})$$

is described as a map

$$U_{\alpha} \times F \to U_{\alpha} \times F$$

(using θ_{α} and θ'_{α}) by $(u, f) \mapsto (u, g_{\alpha}(u)f)$, where $g_{\alpha} \colon U_{\alpha} \to G$ is a continuous map. In other words, we have a collection (g_{α}) of continuous maps $g_{\alpha} \colon U_{\alpha} \to G$ such that for each α , and if $\tilde{g}_{\alpha} \colon U_{\alpha} \times F \to U_{\alpha} \times F$ is the map $(u, f) \mapsto (u, g_{\alpha}(u)f)$ then the diagram

$$\begin{array}{ccc} \pi^{-1}(U_{\alpha}) & \xrightarrow{\text{via } \phi} & \pi'^{-1}(U_{\alpha}) \\ \theta_{\alpha} & & & \downarrow \\ \theta_{\alpha} & & & \downarrow \\ U_{\alpha} \times F & \xrightarrow{q} & U_{\alpha} \times F \end{array}$$

commutes for each α . Such morphisms ϕ are actually gauge morphisms. They have the property that if $t_{\alpha\beta} \colon U_{\alpha\beta} \to G$ and $s_{\alpha\beta} \colon U_{\alpha\beta} \to G$ are the transition functions for \mathscr{F} and \mathscr{G} with respect to θ and θ' , then

$$g_{\alpha}(u)t_{\alpha\beta}(u) = s_{\alpha\beta}(u)g_{\beta}(u) \qquad (u \in U_{\alpha\beta})$$

holds for every pair of indices (α, β) .

Remark 1.1.1. A morphism of fibre bundles with fibre F and stricture group G is necessarily and isomorphism, for the maps \tilde{g}_{α} are clearly homeomorphisms.

Date: September 12, 2012.

LECTURE 10

2. Principle bundles through right *G*-actions

2.1. We have seen that if $\pi: P \to X$ is a principal *G*-bundle then there is a canonical *G*-action from the right on *P* such that the map π is equivariant for the trivial right action of *G* on *X*. A partial converse is the following theorem

Theorem 2.1.1. Suppose $\pi: \mathscr{F} \to X$ is a continuous map such that there is a right G-action on \mathscr{F} which is equivariant for for the trivial right action on X. The $\pi: \mathscr{F} \to X$ is a principal G bundle if and only if there is an open cover $\mathscr{U} = \{U_{\alpha}\}$ of X together with a G-equivariant homeomorphisms (for the right action of G on $U_{\alpha} \times G$), one for each index α

$$\varphi_{\alpha} \colon U_{\alpha} \times G \to \pi^{-1}(U_{\alpha})$$

such that the diagram

$$U_{\alpha} \times G \xrightarrow{\varphi_{\alpha}} \pi^{-1} U_{\alpha}$$

$$\downarrow^{via \ \theta}$$

$$U_{\alpha}$$

commutes for every α .

3. 1-Cocycles and the first cohomology set

3.1. The sheaf of *G***-valued functions.** Let *X* be a topological space. Let $\mathscr{G} = \mathscr{G}_X$ denote the sheaf of *G*-valued continuous functions on *X*. Thus

 $\Gamma(U, \mathscr{G}) = \{ U \xrightarrow{\alpha} G \,|\, \alpha \text{ is continuous} \} \qquad (U \text{ open in } X)$

and the restriction maps are the usual restrictions of functions.

Since G need not be abelian, \mathscr{G} need not be a sheaf of abelian groups on X. Let $\mathscr{U} = \{U_i\}_{i \in I}$ be an open cover of X. Let

$$C^1(\mathscr{U},\mathscr{G}) = \prod_{ij\in I\times I} \Gamma(U_{ij},\mathscr{G}).$$

A typical element of $C^1(\mathcal{U}, \mathcal{G})$ looks like (f_{ij}) where $f_{ij}: U \to G$ is a continuous map for each pair of indices (i, j). The element (f_{ij}) is said to be a 1-cocycle if

(3.1.1)
$$f_{ij}(u)f_{jk}(u) = f_{ik}(u) \quad \text{for } u \in U_{ijk} \text{ and for every } i, j, k \in I.$$

Let $Z^1(\mathscr{U}, \mathscr{G})$ denote the set of 1-cocycles in $C^1(\mathscr{U}, \mathscr{G})$. Two 1-cocycles (f_{ij}) and (g_{ij}) are said to be *cohomologous* if there exist $h_i \in \mathscr{G}(U_i)$ such that

$$h_i(u)f_{ij}(u) = g_{ij}(u)h_j(u) \qquad u \in U_{ij}, (i,j) \in I \times I.$$

One checks that this gives an equivalence relation on $Z^1(\mathscr{U}, \mathscr{G})$.

Remark 3.1.2. $Z^1(\mathscr{U}, \mathscr{G})$ has a distinguished element, namely (1_{ij}) , where $I_{ij}: U_{ij} \to G$ is the map $u \mapsto 1$ where $1 \in G$ is the identity element. Thus $Z^1(\mathscr{U}, \mathscr{G})$ is a pointed set.

Let $\mathrm{H}^1(\mathscr{U},\mathscr{G})$ be the set of equivalence classes in $Z^1(\mathscr{U},\mathscr{G})$ with respect to the the equivalence relation "cohomologous to". Note that $\mathrm{H}^1(\mathscr{U},\mathscr{G})$ has a distinguished element. As in the classical case (of sheaves of *abelian groups*) we define

$$\mathrm{H}^{1}(\mathscr{U},\mathscr{G})\to\mathrm{H}^{1}(\mathscr{V},\mathscr{G})$$

LECTURE 10

if \mathscr{V} is a refinement of \mathscr{U} . In greater detail, let $\mathscr{V} = \{V_i\}_{j \in J}$ be a refinement of $\mathscr{U} = \{U_i\}_{i \in I}$, and suppose $\tau \colon J \to I$ is a *refining map*, i.e., $V_j \subset U_{\tau(j)}$ for all $j \in J$. Then a 1-cocycle

$$\sigma = (f_{i_1 i_2}) \in Z^1(\mathscr{U}, \mathscr{G})$$

gives rise to a 1-cocycle $\tau^* \sigma \in Z^1(\mathscr{V}, \mathscr{G})$ given by

$$\tau^* \sigma_{j_1 j_2} = f_{\tau(j_1) \tau(j_2)} |_{V_{j_1 j_2}}.$$

This map $\tau^* \colon Z^1(\mathscr{U}, \mathscr{G}) \to Z^1(\mathscr{V}, \mathscr{G})$ preserves the relation "cohomologous to". We thus get

$$\Phi^{\mathscr{V}}_{\mathscr{U}} \colon \mathrm{H}^{1}(\mathscr{U}, \mathscr{G}) \to \mathrm{H}^{1}(\mathscr{V}, \mathscr{G}).$$

Standard arguments show that $\Phi_{\mathscr{U}}^{\mathscr{V}}$ depends only on \mathscr{U} and \mathscr{V} and not on the refining map τ . The map $\Phi_{\mathscr{U}}^{\mathscr{V}}$ is a map of pointed sets. Turns out that

$$\Phi^{\mathscr{W}}_{\mathscr{V}} \circ \Phi^{\mathscr{V}}_{\mathscr{U}} = \Phi^{\mathscr{W}}_{\mathscr{U}}.$$

Define

$$\mathrm{H}^{1}(X, \mathscr{G}) = \varinjlim_{\mathscr{U}} \mathrm{H}^{1}(\mathscr{U}, \mathscr{G}).$$

Proposition 3.1.3. Let X be as above, and let F be a topological space on which G acts from the left. There is a bijective correspondence between isomorphism classes of fibre bundles over X (with structure group G ad fibre F) and $H^1(X, \mathcal{G})$.