LECTURE 1

1. Gluing sheaves

Let X be a topological space and $\mathscr{X} = \{X_{\alpha} \mid \alpha \in \Lambda\}$ an open cover of X. For any open subset $U \subset X$, and indices α , β , γ in Λ define $U_{\alpha} := U \cap X_{\alpha}$, $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} = U \cap X_{\alpha\beta}$, and $U_{\alpha\beta\gamma} := U_{\alpha} \cap U_{\beta} \cap U_{\gamma} = U \cap X_{\alpha\beta\gamma}$. We also will use the notation $\mathscr{X} \cap U$ for the open cover $\{U_{\alpha}\}$ of U. Suppose that for each $\alpha \in \Lambda$ we have a sheaf \mathscr{F}_{α} on X_{α} and isomorphisms

$$\varphi_{\alpha\beta} \colon \mathscr{F}_{\beta}|_{X_{\alpha\beta}} \xrightarrow{\sim} \mathscr{F}_{\alpha}|_{X_{\alpha\beta}}$$

—one for each pair of indices $\alpha,\beta\in\Lambda$ —these isomorphisms satisfying the co-cycle rules

$$\varphi_{\alpha\alpha} = 1, \qquad \alpha \in \Lambda$$

$$\varphi_{\alpha\beta} \circ \varphi_{\beta\gamma} = \varphi_{\alpha\gamma} \quad \text{on } X_{\alpha\beta\gamma} \quad \alpha, \beta, \gamma \in \Lambda.$$

Then (as we will show) there is a sheaf \mathscr{F} on X together with isomorphisms

$$\psi_{\alpha} \colon \mathscr{F}|_{X_{\alpha}} \xrightarrow{\sim} \mathscr{F}_{\alpha}$$

such that the diagram

commutes. In fact the pair $(\mathscr{F}, \{\psi_{\alpha}\}_{\alpha})$ is unique up to unique isomorphism. Here is how one finds \mathscr{F} .

Pick an open set U in X. Define a map $\varphi^*(U) \colon \prod_{\alpha \in \Lambda} \mathscr{F}_{\alpha}(U_{\alpha}) \to \prod_{(\alpha,\beta)} \mathscr{F}_{\alpha}(U_{\alpha\beta})$ by

$$(s_{\alpha})_{\alpha} \mapsto (s_{\alpha}|_{U_{\alpha\beta}} - \varphi_{\alpha\beta}(U_{\alpha\beta})(s_{\beta}|_{U_{\alpha\beta}}))_{\alpha\beta}$$

Now define

$$\mathscr{F}(U) := \ker(\varphi^*(U)).$$

It is easy to see that the assignment $U \mapsto \mathscr{F}(U)$ is a sheaf.

Where are the co-cycle rules used? In producing the isomorphisms

$$\psi_{\alpha} \colon \mathscr{F}|_{X_{\alpha}} \xrightarrow{\sim} \mathscr{F}_{\alpha} \qquad \alpha \in \Lambda$$

satisfying the requirement that the diagram above commutes for every pair (α, β) . Here is a sketch of how that is done. Fix an index $\lambda \in \Lambda$. Let $U \subset X_{\lambda}$ be an open subset of X_{λ} . Then, by our notations, $U = U_{\lambda}$. Pick an element $s \in \mathscr{F}(U)$. Write

$$s = (s_{\alpha})_{\alpha}$$

Date: August 13, 2012.

LECTURE 1

By definition of $\mathscr{F}(U)$ as the kernel of $\varphi^*(U)$, and using the co-cycle rules, we get, for every $\alpha \in \Lambda$,

$$s_{\alpha} = \varphi_{\alpha\lambda}(s_{\lambda}|_{U_{\alpha}}).$$

Thus s_{λ} determines all the s_{α} . Note that we are using the fact that U is U_{λ} , whence $U_{\lambda\alpha} = U_{\alpha}$. Define

$$\psi_{\lambda}(U) \colon \mathscr{F}(U) \to \mathscr{F}_{\lambda}(U)$$

by

$$(s_{\alpha})_{\alpha} \mapsto s_{\lambda}$$

One checks, as U varies over open subsets of X_{λ} , that this defines a map of sheaves $\psi_{\lambda} \colon \mathscr{F}|_{X_{\lambda}} \to \mathscr{F}_{\lambda}$. Since s_{λ} determines all other s_{α} in a section $(s_{\alpha})_{\alpha} \in \mathscr{F}(U)$ for $U \subset X_{\lambda}, \psi_{\lambda}$ is an isomorphism. There is, as we pointed out in the lecture, another way of doing this. Consider the diagram of exact sequences.

If we show that it commutes, then ψ_{λ} has to be an isomorphism, since all other downward arrows are isomorphisms. The only important diagram is the square on the right. The element chase is as follows:

