## LECTURE 1

## 1. Gluing sheaves

Let $X$ be a topological space and $\mathscr{X}=\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ an open cover of $X$. For any open subset $U \subset X$, and indices $\alpha, \beta, \gamma$ in $\Lambda$ define $U_{\alpha}:=U \cap X_{\alpha}$, $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}=U \cap X_{\alpha \beta}$, and $U_{\alpha \beta \gamma}:=U_{\alpha} \cap U_{\beta} \cap U_{\gamma}=U \cap X_{\alpha \beta \gamma}$. We also will use the notation $\mathscr{X} \cap U$ for the open cover $\left\{U_{\alpha}\right\}$ of $U$. Suppose that for each $\alpha \in \Lambda$ we have a sheaf $\mathscr{F}_{\alpha}$ on $X_{\alpha}$ and isomorphisms

$$
\varphi_{\alpha \beta}:\left.\left.\mathscr{F}_{\beta}\right|_{X_{\alpha \beta}} \xrightarrow{\sim} \mathscr{F}_{\alpha}\right|_{X_{\alpha \beta}},
$$

-one for each pair of indices $\alpha, \beta \in \Lambda$-these isomorphisms satisfying the co-cycle rules

$$
\begin{aligned}
\varphi_{\alpha \alpha} & =1, & & \alpha \in \Lambda \\
\varphi_{\alpha \beta} \circ \varphi_{\beta \gamma} & =\varphi_{\alpha \gamma} & & \text { on } X_{\alpha \beta \gamma} \quad \alpha, \beta, \gamma \in \Lambda .
\end{aligned}
$$

Then (as we will show) there is a sheaf $\mathscr{F}$ on $X$ together with isomorphisms

$$
\psi_{\alpha}:\left.\mathscr{F}\right|_{X_{\alpha}} \xrightarrow{\sim} \mathscr{F}_{\alpha}
$$

such that the diagram

commutes. In fact the pair $\left(\mathscr{F},\left\{\psi_{\alpha}\right\}_{\alpha}\right)$ is unique up to unique isomorphism. Here is how one finds $\mathscr{F}$.

Pick an open set $U$ in $X$. Define a $\operatorname{map} \varphi^{*}(U): \prod_{\alpha \in \Lambda} \mathscr{F}_{\alpha}\left(U_{\alpha}\right) \rightarrow \prod_{(\alpha, \beta)} \mathscr{F}_{\alpha}\left(U_{\alpha \beta}\right)$ by

$$
\left(s_{\alpha}\right)_{\alpha} \mapsto\left(\left.s_{\alpha}\right|_{U_{\alpha \beta}}-\varphi_{\alpha \beta}\left(U_{\alpha \beta}\right)\left(\left.s_{\beta}\right|_{U_{\alpha \beta}}\right)\right)_{\alpha \beta}
$$

Now define

$$
\mathscr{F}(U):=\operatorname{ker}\left(\varphi^{*}(U)\right)
$$

It is easy to see that the assignment $U \mapsto \mathscr{F}(U)$ is a sheaf.
Where are the co-cycle rules used? In producing the isomorphisms

$$
\psi_{\alpha}:\left.\mathscr{F}\right|_{X_{\alpha}} \xrightarrow{\sim} \mathscr{F}_{\alpha} \quad \alpha \in \Lambda
$$

satisfying the requirement that the diagram above commutes for every pair $(\alpha, \beta)$. Here is a sketch of how that is done. Fix an index $\lambda \in \Lambda$. Let $U \subset X_{\lambda}$ be an open subset of $X_{\lambda}$. Then, by our notations, $U=U_{\lambda}$. Pick an element $s \in \mathscr{F}(U)$. Write

$$
s=\left(s_{\alpha}\right)_{\alpha}
$$

[^0]By definition of $\mathscr{F}(U)$ as the kernel of $\varphi^{*}(U)$, and using the co-cycle rules, we get, for every $\alpha \in \Lambda$,

$$
s_{\alpha}=\varphi_{\alpha \lambda}\left(\left.s_{\lambda}\right|_{U_{\alpha}}\right) .
$$

Thus $s_{\lambda}$ determines all the $s_{\alpha}$. Note that we are using the fact that $U$ is $U_{\lambda}$, whence $U_{\lambda \alpha}=U_{\alpha}$. Define

$$
\psi_{\lambda}(U): \mathscr{F}(U) \rightarrow \mathscr{F}_{\lambda}(U)
$$

by

$$
\left(s_{\alpha}\right)_{\alpha} \mapsto s_{\lambda} .
$$

One checks, as $U$ varies over open subsets of $X_{\lambda}$, that this defines a map of sheaves $\psi_{\lambda}:\left.\mathscr{F}\right|_{X_{\lambda}} \rightarrow \mathscr{F}{ }_{\lambda}$. Since $s_{\lambda}$ determines all other $s_{\alpha}$ in a section $\left(s_{\alpha}\right)_{\alpha} \in \mathscr{F}(U)$ for $U \subset X_{\lambda}, \psi_{\lambda}$ is an isomorphism. There is, as we pointed out in the lecture, another way of doing this. Consider the diagram of exact sequences.


If we show that it commutes, then $\psi_{\lambda}$ has to be an isomorphism, since all other downward arrows are isomorphisms. The only important diagram is the square on the right. The element chase is as follows:



[^0]:    Date: August 13, 2012.

