TORSORS HOMEWORK 1

Due on Monday August 20, 2012.

Recall that a map of (commutative) rings $A \to B$ is said to be flat if the functor $(_) \otimes_A B$ (from Mod_A to Mod_B) is exact. We say a map of schemes $f: X \to Y$ is flat if the functor f^* from quasi-coherent \mathscr{O}_Y -modules to quasi-coherent \mathscr{O}_X -modules is exact.

- (1) Let f: X → Y be a map of schemes. Show that the following are equivalent
 (a) The map of schemes f: X → Y is flat.
 - (b) For every $x \in X$, the natural map of rings $\mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$ is flat
 - (c) For every pair of affine open subschemes $U = \operatorname{Spec} B \subset X$ and $V = \operatorname{Spec} A \subset Y$ such that U maps to V under f, the map of rings $A \to B$ is flat.
- (2) Show that flatness is stable under base change. In other words show that if

is a cartesian square (i.e., a fibre product diagram), and if f is flat, then so is f'. [*Hint*: Use the previous problem to reduce the problem to the affine case and prove it there.]

- (3) Show that the composite of flat maps of schemes is flat.
- (4) Let A → B be a map of rings. Show that the following are equivalent:
 (a) B is flat over A and Spec B → Spec A is surjective.¹
 - (b) A sequence of A-modules

$$M' \to M \to M'$$

is exact if and only if $(\mathbf{E}) \otimes_A B$ is exact.

- (c) A homomorphism of A-modules $M \to M'$ is injective if and only if the associated homomorphism $M' \otimes_A B \to M \otimes_A B$ is injective.
- (d) B is flat over A, and an A-module M is zero if and only if $M \otimes_A B = 0$.
- (e) B is flat over A, and $\mathfrak{m}B \neq B$ for all maximal ideals \mathfrak{m} of A.

 (\mathbf{E})

Date: August 26, 2012.

¹As a map of sets.

Definition 0.0.1. A map of rings $A \to B$ is said to be *faithfully flat* if it satisfies any of the equivalent conditions of the previous problem. A map of schemes $X \to Y$ is said to be faithfully flat if it is flat and surjective (as a map of sets).

- (5) Let f: X → Y be a map of schemes. Show that the following are equivalent:
 (a) The map f is faithfully flat.
 - (b) A sequence **E** of quasi-coherent \mathscr{O}_Y -modules

$$(\mathbf{E}) \qquad \qquad \qquad \mathscr{F}' \to \mathscr{F} \to \mathscr{F}''$$

is exact if and only if $f^*(\mathbf{E})$ is exact.

- (c) A map $\theta: \mathscr{F} \to \mathscr{F}'$ of quasi-coherent \mathscr{O}_Y -modules is injective if and only if $f^*\theta$ is injective.
- (d) The map f is flat and $f^*\mathscr{F} = 0$ only if $\mathscr{F} = 0$ for \mathscr{F} a quasi-coherent \mathscr{O}_Y -module.
- (6) Show the following:
 - (a) The composite of faithfully flat maps is faithfully flat.
 - (b) Any base change of a faithfully flat map is again faithfully flat. [*Hint*: Suppose we have a cartesian square

with f faithfully flat. From a previous problem we know that f' is flat. One only has to check that it is surjective.]