
BERKOVICH SPACES SEMINAR - LECTURE 2

Date of Lecture: January 30, 2020

The infinite interval [0,∞) will be denoted R+. It is convenient to include 0 in
the set N. Thus, in this seminar, N = {0, 1, 2, . . . }.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

All Banach rings will be assumed commutative with 1.
We fix a Banach ring (A , ‖ ‖) throughout this lecture. As in §§2.3 of Lecture 1,

its spectrum (or its Berkovich spectrum) M (A ) is the set of bounded seminorms
on A endowed with the weakest topology for which every member of {Ψf}f∈A

is continuous, where Ψf is the map x 7→ |f |x. Here, as in Lecture 1, | |x is the
notation for x when we think of x ∈M (A ) as a seminorm rather than as a point.

1. Basics

1.1. Multiplicative seminorms. Recall that a seminorm | | on A is said to be
bounded if there exists a C > 0 such that |f | ≤ C‖f‖ for all f ∈ A . This amounts
to saying that the map

(A , ‖ ‖) −→ (A , | |),
which the identity map on the underlying ring A , is continuous. If | | is multi-
plicative then one can take C = 1. Indeed, for each n ≥ 1 we have |f |n = |fn| ≤
C‖fn‖ ≤ C‖f‖n, whence |f | ≤ n

√
C‖f‖. Letting n→∞ the assertion follows.

Lemma 1.1.1. Suppose A is a field. A seminorm | | on A is multiplicative if and
only if |f−1| = |f |−1 for all f ∈ A r {0}.

Proof. If | | is multiplicative clearly |f−1| = |f |−1 for all f ∈ A r {0}. For the
converse, suppose |f−1| = |f |−1 for all f ∈ A r {0}. It is enough to show that for
non-zero f, g ∈ A, |fg| ≥ |f ||g|. Now,

|f | = |fgg−1| ≤ |fg||g−1| = |fg||g|−1 (0 6= f, g ∈ A )

whence |f ||g| ≤ |fg| as required. �

1.2. The ring A 〈r−1T 〉. The following is an analogue of the ring associated with
a rational domain in an affinoid space in rigid analytic geometry.

Definition 1.2.1. For r > 0, A 〈r−1T 〉 is the subring of the power series ring
A[|T |] defined by the formula

A 〈r−1T 〉 :=

{ ∞∑
n=0

anT
n ∈ A[|T |]

∣∣∣∣∣
∞∑
n=0

‖an‖rn <∞

}
.

For
∑∞
n=0 anT

n ∈ A 〈r−1T 〉, we set

(1.2.2)
∥∥∥ ∞∑
n=0

anT
n
∥∥∥ =

∞∑
n=0

‖an‖rn.
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Lemma 1.2.3. (A 〈r−1T 〉, ‖ ‖) is a Banach ring. Moreover, for a ∈ A , the ele-
ment 1− aT ∈ A 〈r−1T 〉 is a unit if and only if

∑
n‖an‖rn <∞.

Proof. The first part is left to the reader. As for the second part, note that the
formal inverse of 1 − aT in A [|T |] is

∑
n a

nTn and the latter is a member of
A 〈r−1T 〉 if and only if

∑
n‖an‖rn <∞. �

1.3. The Gel’fand transform and characters.

1. Let x ∈ M (A ).1 We write | |x for x when we wish to emphasise its role as a
multiplicative seminorm. Define the kernel of | |x as the set

℘x = {f ∈ A | |f |x = 0}.

It is straightforward to check that ℘x is a prime ideal in A . Clearly the residue
seminorm of | |x on A /℘x is a muliplicative norm, which extends to the quotient
field Q(x) of A /℘x as an absolute value, which we continue to denote | |x. Let
K (x) be the completion of Q(x) with respect to | |x. The image of any element
f ∈ A in K (x) will be denoted f(x). We have a homomorphism, the so-called
Gel’fand transform:

̂ : A −→
∏

x∈M (A )

K (x), f 7−→ f̂ = (f(x))x∈M (A ).

2. A character on A is a bounded homomorphism χ : A → K where K is a field
with an absolute value. The kernel is clearly a closed prime ideal of A . Two
characters χ′ : A → K ′ and χ′′ : A → K ′′ have the same kernel if and only if
one can find a character χ : A → K (e.g. K the quotient field of A /℘, where ℘
is the common kernel of χ′ and χ′′) and a commutative diagram

A
χ′

wwppp
ppp

ppp
ppp

p
χ′′

''OO
OOO

OOO
OOO

OO

χ

��
K ′ Koo // K ′′

We say χ′ and χ′′ are equivalent if we can embed them in a commutative dia-
gram as above. It is clear from (i) and the discussion here that M (A ) is in a
bijective correspondence with set of equivalence classes of characters. Moreover
there is an injective map M (A ) ↪→ Specc A where Specc A is the space of
closed prime ideals in A . Indeed if χx is a character representing x ∈ M (A ),
then ℘x = kerχx a closed prime ideal and the map M (A ) → Specc(A ), given
by x 7→ ℘x, is one-to-one.

3. Let ϕ : A → B be a continuous homomorphism of commutative rings. If
| | : B → R+ is a bounded multiplicative seminorm, then so is | | ◦ϕ giving
us a natural map

ϕ∗ : M (B) −→M (A ).

This map is clearly continuous. In somewhat greater detail, the topology on
M (A ) is generated by sets of the form Ψ−1

f (B) where B is an open ball in R

and f ∈ A . Here Ψf : M (A )→ R is the map x 7→ |f |x. A similar comment is

1See §§2.3 of Lecture 1 for a defintion of M (A ).
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true for M (B). Now for f ∈ A , (ϕ∗)−1(Ψ−1
f (B)) = Ψ−1

ϕ(f)(B) showing that ϕ∗

is continuous.

2. Stone-Čech compactifications and products of Banach rings

2.1. The product of Banach rings. Suppose (Ai)i∈I is a family of Banach rings
indexed by a nonempty set I. We set

∏
i∈I Ai equal to the set of families (fi)i∈I

with fi ∈ Ai for each i ∈ I such that the set {‖fi‖, i ∈ I} is bounded in R. Note
that this is not the usual definition of a product. One defines a norm on

∏
i Ai in�

the obvious way, namely

‖(fi)i∈I‖ := sup
i∈I
‖fi‖.

Lemma 2.1.1. (
∏
i∈I Ai, ‖ ‖) is a Banach ring.

Proof. It is is easy to see that (
∏
i Ai, ‖ ‖) is a normed ring. Since there were

some doubts expressed during the lecture about
∏
i Ai being Banach, here is a

proof. If {f (n)}n = {(f (n)

i )}n is a Cauchy sequence in
∏
i∈I Ai then each {f (n)

i }
is clearly a Cauchy sequence in Ai. Let gi = limn→∞ f (n)

i and g = (gi). Since
{(f (n)

i )}n is Cauchy, it is bounded, i.e. there exists a positive real number M such
that ‖(f (n)

i )‖ ≤ M , or, what amounts to the same thing, ‖f (n)

i ‖ ≤ M , for n ∈ N
and i ∈ I. Thus ‖gi‖ ≤ M for i ∈ I, and therefore g ∈

∏
i Ai. Next, given

ε > 0, there exists N ∈ N such that ‖f (n) − f (m)‖ < ε for n,m ≥ N . This gives
‖f (n)

i − f (m)

i ‖ < ε for n,m ≥ N , for each i ∈ I, whence, letting m→∞, we get

‖f (n)

i − gi‖ ≤ ε for n ≥ N and i ∈ I.
The integer N ∈ N does not depend upon i ∈ I (from the manner it was chosen).
Thus ‖f (n) − g‖ ≤ ε for n ≥ N , and we are done. (The point is that the convergence
is uniform over I, and what have given is the standard proof for bounded functions
on a set with the sup norm being a complete space.) �

Proposition 2.1.2. Let (Ki)i∈I be a family of complete valuation fields and A =∏
i∈I Ki. Then M (A ) is homeomorphic to the Stone-Čech compactification of I,

where I is endowed with the discrete topology.

Proof. We remind the reader that the Stone-Čech compactification of a topologi-
cal space X is a compact Hausdorff space β(X) together with a continuous map
β∗ : X → β(X) such that any continuous map f : X → K from X to a compact
Hausdorff space K factors uniquely through β∗. In other words we have unique
continuous map βf : β(X)→ K such that the diagram

X

f

!!B
BB

BB
BB

BB
BB

BB
BB

BB
β∗ // β(X)

βf

��
K

commutes. If X is locally compact and Hausdorff (e.g. I with the discrete topology)
then β∗ is an open dense embedding, i.e., the map X → β∗(X) induced by β∗ is
a homeomorphism with β∗(X) dense in β(X), and in this case β(X) agrees with
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our intuition of a compactification. Suppose now that X is locally compact and
Hausdorff. By the Heine-Borel theorem and the universal property encapsulated
by the above commutative diagram, any bounded function f : X → Rn extends
uniquely to a bounded function βf : β(X)→ Rn and in this case supx∈X‖f(x)‖ =
supz∈β(X)‖βf(z)‖.

We now specialise to I with the discrete topology. The general construction of
β(X) translates to the following construction of β(I). As a set β(I) is the set of
ultrafilters on I, a notion which we now define. A filter is a family Φ of nonempty
subsets of I, i.e. Φ is a filter if Φ ⊂ P(I) r {∅} where P(I) is the power set of
I. There is an obvious partial order on filters, namely the one given by inclusions.
Ultrafilters are maximal filters in this partial order. Thus, as a set

β(I) = {Φ | Φ is an ultrafilter}.
The topology on β(I) is as follows. For each non-empty subset J of I let

UJ = {Φ | Φ is an ultrafilter on I and J ∈ Φ}.
The {UJ}J form a basis for a topology on β(I), and this is the topology on β(I)
giving it the defining universal property. For i ∈ I, if Φi is the subset of P(I)
consisting of sets J containing {i}, then Φi is an ultrafilter, and β∗ is the map
i 7→ Φi.

If h : I → R is a bounded map, and Φ an ultra filter, then for each J ∈ Φ the
supremum supj∈J h(j) is finite. Moreover supj∈J h(j) ≥ infi∈I h(i) whence

(∗) h∗(Φ) = inf
J∈Φ

sup
j∈J

h(j) ∈ R.

It turns out that h∗ : β(I)→ R is the unique extension of h to a continuous function
on β(I). (It is easy to see that h∗(Φi) = h(i) for all i ∈ I.)

For a character χ : A → K, let ℘χ = kerχ. From 2. in §§1.3 we see that there is
an bijective map of sets from M (A ) to {℘χ | χ a character of A }. Recall ℘χ is a
prime ideal. We claim that ℘χ is actually a maximal ideal and that every maximal
ideal m of A is of the form m = ℘χ for a character of A . This will give a bijective
correspondence between Max(A ) and M (A ), where Max(A ) is the set of maximal
ideals of A . We will also establish a bijective correspondence between Max(A ) and
β(I). In other words, we claim is that there is a commutative diagram of bijective
set-theoretic maps

M (A )

vvmmm
mmm

mmm
mmm

m

''PP
PPP

PPP
PPP

PP

Max(A )

66mmmmmmmmmmmmm
// β(I)oo

ggPPPPPPPPPPPPP

To set up these correspondences we need some notation. If J ⊂ I let aJ ∈ A be
the “characteristic function” of I r J , i.e. aJ,i = 0 if i ∈ J , and aJ,i = 1 if i /∈ J .
For a proper closed ideal a of A let

Φa = {J ⊂ I | aJ ∈ a}.
Once checks that Φa is a filter on I.2 Conversely, given a filter Φ on I, let aΦ be the
closed ideal of A generated by elements of the form aJ for J ∈ Φ. One checks that

2To define Φa it is not necessary to assume a is closed. However, it is easy to check that
Φa = Φa where a is the closure of a.
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a 7→ Φa and Φ 7→ aΦ are inverse maps. Moreover, these correspondences respect
the obvious partial orders, whence maximal ideals (which are always closed) are in
bijective correspondence with ultra-filters. This gives the horizontal correspondence
in the above diagram.

Now for the correspondence indicated on the left (the southwest-northeast cor-
respondence). In view of the conclusions in §§1.3 2. it is enough to prove:

(a) Every closed prime ideal is maximal, i.e. Specc A = Max(A ).
(b) If m is a maximal ideal on A then the residue seminorm on A /m is multiplica-

tive.

Let ℘ be a closed prime ideal of A and m a maximal ideal such that ℘ ⊂ m and
℘ 6= m. Let J ∈ Φm r Φ℘. Then aJ ∈ mr ℘. On the other hand aIrJ /∈ m, for, if
aIrJ ∈ m, then 1 = aJ + aIrJ ∈ m contradicting the fact that m is a proper ideal.
Now aJaIrJ = 0, and neither aJ nor aIrJ lie in ℘. This is a contradiction. This
proves (a). For (b), if m ∈ Max(A ), and π : A → A /m is the canonical surjection,
then it is easy to see that

(∗∗) ‖π(f)‖π = inf
J∈Φm

sup
j∈J
|fj |

where ‖ ‖π is the residue norm on A /m. From this it follows that ‖ ‖π is multi-
plicative.

Composing the two bijective correspondences we have established, we get the
third one, namely the bijection between M (A ) and β(I). We now show that the
bijection β(I)→M (A ) so obtained is a homeomorphism.

We regard I in a natural way as a discrete subspace of both M (A ) and β(I). If
f = (fi) ∈ A , then we have a map fI : I → R+ given by i 7→ |fi|. By definition of
A , this is a bounded function. The map Ψf : M (A ) → R+ given by x 7→ |f |x is
a natural extension of fI to M (A ). On the other hand, by the universal property
of β(I), there is a unique continuous bounded map f∗I : β(I) → R+ extending fI .
From (∗) and (∗∗) it is clear that Ψf and f∗I “agree”, i.e. are compatible with the
bijection between M (A ) and β(I). It follows that the bijection β(I) →M (A ) is
continuous, since the topology on M (A ) is the weakest topology such that every
member the family of functions {Ψf | f ∈ A } is continuous. Indeed, the topology
on M (A ) is coarser than the one on β(I), when we identify the two underlying
sets.

It remains to show that β(I)→M (A ) is an open map. Let J be a non-empty
subset of I and UJ the corresponding basic open set in β(I) defined earlier in this
proof. Let VJ be its image in M (A ). Let f = aJ . Then f∗I is zero on UJ and 1
on β(I) r UJ . It follows that Ψf is zero on VJ and 1 on M (A ) r VJ . Since Ψf is
continuous, we get that VJ is open. �
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