
BERKOVICH SPACES SEMINAR - LECTURE I

Date of Lecture: January 23, 2020

The infinite interval [0,∞) will be denoted R+. It is convenient to include 0 in
the set N. Thus, in this seminar, N = {0, 1, 2, . . . }.

The symbol � is for flagging a cautionary comment or a tricky argument. It
occurs in the margins and is Knuth’s version of Bourbaki’s “dangerous bend sym-
bol”.

1. Summary of Tate algebras and Affinoid algebras

1.1. Absolute values. An absolute value | | on a field K is a map

| | : K → R+

such that for x, y ∈ K we have

(a) |x| = 0⇔ x = 0,
(b) |xy| = |x||y|,
(c) |x+ y| ≤ |x|+ |y|.

If (c) can be replaced by the stronger condition

(c′) |x+ y| ≤ max{|x|, |x|},
then | | is called non-archimedean. It turns out, | | is non-archimedean if and only
if |n · 1| ≤ 1 for n ∈ N. The metric corresponding to such an absolute value is an
ultrametric.

A valued field is a pair (K, | |) withK a field and | | an absolute value on it. There
is clearly a notion, via the usual metric space completion via Cauchy sequences, of

a completion K̂ of a valued field. This is easily seen to be a field, and | | extends

to an absolute value on K̂ in a unique way.
On a field K, one always has the trivial absolute value, namely |x| = 1 for all

x 6= 0.
For the rest of this section we will fix a complete non-archimedean valued field

(K, | |), such that | | is non-trivial. Set OK = {x ∈ K | |x| ≤ 1} and mK = {x ∈
K | |x| < 1}. Then OK is a valuation ring and mK is its maximal ideal. The field

K̃ := OK/mK

is called the residue field1 of the valued field K. Since K is complete, every finite
extension L of K is complete. In greater detail, there is a unique extension of | | to
L. Moreover L is complete with respect to this absolute value.2 It is clear that | |
extends uniquely to any algebraic closure K of K.

1The definition of OK , mK and the notion of a residue field K̃ do not need the completeness

hypothesis, and are in fact important in the non-complete case too.
2In general, when K is possibly not complete, if L is a finite extension, the number of extensions

of | | to L equals the number of maximal ideals in the semi-local artin ring L⊗K K̂.
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1.2. Visualising ultrametrics. There are ways of visualising ultrametrics via
trees. Ramadas pointed me towards Jan Holly’s AMM article [H], which you can
access by clicking here. The article is highly recommended. Here is a sample picture
from it.

Figure 1. The 3-adic absolute value (see [H, Figure 2]).

1.3. Facts and definitions. Here is the promised summary.

1. For n ∈ N set

Tn :=

{ ∑
ν∈Nn

cνζ
ν1
1 . . . ζνnn ∈ K[|ζ1, . . . , ζn|]

∣∣∣∣∣ lim
|ν|→∞

cν = 0

}
where ζ1, . . . , ζn are free analytic variables over K. Here ν = (ν1, . . . , νn) and
|ν| = ν1 + · · ·+ νn. Tn is called the Tate algebra of dimension n over K. On Tn
we have a norm, the so-called Gauss norm, namely ‖ ‖ : Tn → R+ given by∥∥∥ ∑

ν∈Nn

cνζ
ν
∥∥∥ = max

ν
|cν |.
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2. The map ‖ ‖ induces an ultrametric on Tn making it a multiplicative Banach K-
algebra3 and ‖ ‖. This means ‖ ‖ satisfies (a) ‖f‖ = 0 if and only if f = 0,
(b) ‖a‖ = |a| for all a ∈ K, (c) ‖fg‖ = ‖f‖‖g‖ for f, g ∈ Tn, and (d)
‖f + g‖ ≤ max (‖f‖, ‖g‖) and Tn is complete in the resulting metric. Prop-
erty (c) is the reason ‖ ‖ is called multiplicative and (d) the reason for the term
ultrametric for the induced metric on Tn. (See [RAG, Theorem 1.2.1, Lecture 4]
as well as [ibid, p. 3, Lecture 3] for quick proofs.)

3. Tn is noetherian, of Krull dimension n [RAG, Theorem 1.2.1 Lecture 7]. It is a
regular ring [RAG, Theorem 3.2.3, Lectures 9 and 10].

4. If a is an ideal4 in Tn, then we have a Noether normalisation for Tn/a, i.e. a
finite injective K-algebra homomorphism

Td ↪→ Tn/a

with d (necessarily) equal to the Krull dimension of Tn/a [RAG, Theorem 1.2.4
Lecture 7].

5. If a is an ideal of Tn then Tn/a is a Jacobson ring, i.e. every prime ideal in Tn/a
is the intersection of the maximal ideals containing it [RAG, §§2.1, Lecture 8].

6. More importantly, every ideal in Tn is closed [ibid, §§2.2]. This means that if
A = Tn/a, a ⊂ Tn an ideal, and α : Tn � A the canonical surjection, then the
map

‖ ‖α : A→ R+

given by

‖x‖α = inf{‖f‖
∣∣ f ∈ α−1(x)}, (x ∈ A)

defines a norm ‖ ‖α on A.

7. An affinoid K-algebra is a K-algebra A which is the surjective image of a K-
algebra map from some Tate algebra. From 6. above, if α : Tn � A then we
have a residue norm ‖ ‖α on it. If β : Td � is another surjective K-algebra
homomorphisms then ‖ ‖α and ‖ ‖β are equivalent norms on A in the sense that
there exist constants C > 0 and C ′ > 0 such that C‖·‖β ≤ ‖·‖α ≤ C ′‖·‖β . More-
over any K-algebra map between affinoid algebras is continuous. The complete
statement is:

Theorem: [RAG, Corollary 2.2.5, Lecture 11] Let A and B be affinoid algebras
endowed with residue norms arising from surjective maps from Tate algebras,
and let ϕ : A → B be a K-algebra homomorphism. Then ϕ is continuous. In
particular if we have two surjective homomorphisms from Tate algebras to A,
say α : Tn � A and β : Tm � A, then ‖·‖α and ‖·‖β are equivalent. (See also
[ibid, Theorem 2.2.4].)

3There is some confusion in the literature regarding the use of the term Banach K-alegbra.
The way Berkovich uses the term Banach ring in [B], the requirement that ‖ ‖ be multiplicative
is not necessary. On the other hand, for a number of authors, a Banach algebra is by definition

multiplicative. So, to hedge my bets, I have called Tn a multiplicative Banach algebra
4An ideal will mean a proper ideal, i.e., a 6= Tn.
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8. Consider the “unit polydisc” in K
n
,

Bn(K) =
{

(x1, . . . , xn) ∈ Kn
∣∣∣ |xi| ≤ 1, 1 ≤ i ≤ n

}
.

For f ∈ Tn, and x ∈ Bn(K), f(x) makes sense as an element of K. Indeed,
if x = (x1, . . . , xn) ∈ Bn(K) then K(x1, . . . , xn) is a finite extension of K, and
since K is complete, so is K(x1, . . . , xn), whence the power series f evaluated
at x converges.5 It turns out that f attains a maximum on Bn(K) and the
following formula, the so-called Maximum Modulus Principle, holds (see [RAG,
§ 3.2, Lecture 4]:

‖f‖ = max
{
|f(x)|

∣∣∣x ∈ Bn(K)
}
.

9. For x ∈ Bn(K), let mx be the kernel of the evaluation map f 7→ f(x). Then
mx ∈ Max(Tn), the maximal spectrum of Tn. We thus have a map Bn(K) →
Max(Tn) given by x 7→ mx. It turns out the map is surjective (see [RAG,
Theorem 1.3.1, Lecture 7]) and the proof of loc.cit. shows that the fibres of this
map are the orbits of Bn(K) under Gal(K/K). It follows that the Gauss norm
on Tn can also be computed by the fomula:

‖f‖ = sup
x∈Max(Tn)

|f(x)| = max
x∈Max(Tn)

|f(x)| (f ∈ Tn)

where f(x) is the image of f in the field K(x) := Tn/mx.

10. With 9. in mind we define the sup norm ‖ ‖sup on an affinoid algebra A by the
formula

‖f‖sup := sup
x∈Max(A)

|f(x)| (f ∈ A).

Here (and everywhere) we write mx for x ∈ Max(A) when we think of it as a
maximal ideal, and f(x) is the image of f in K(x) := A/mx. It turns out that �

for f ∈ A:

(1.3.1) ‖f‖sup = sup
x∈Max(A)

|f(x)| = max
x∈Max(A)

|f(x)|.

Recall from noether normalisation that K(x) is finite over K and hence |·|
extends uniquely from K to K(x). Note that ‖ ‖sup is an “intrinsic” function,
unlike the various residue norms on A.

The sup norm need not be a norm. Indeed, it is not hard to see that ‖fn‖sup =
‖f‖nsup, and hence if f 6= 0 is nilpotent, we have ‖f‖sup = 0. If A is reduced �

then the sup norm is indeed a norm. Here are some well-known properties of
the sup norm.
(a) The sup norm ‖ ‖sup on A is a semi-norm.
(b) ‖ ‖sup is power multiplicative, i.e. ‖fn‖sup = ‖f‖nsup for f ∈ A.
(c) If α : Tn � A is a surjective K-algebra homomorphism, then

‖f‖sup ≤ ‖f‖α (f ∈ A).

In particular the map (A, ‖ ‖α) → (A, ‖ ‖sup) which is the identity on the
underlying sets, is continuous.

(d) ‖f‖sup = 0 if and only if f is nilpotent.

5It should be pointed out that K is not in general complete, even if K is.
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(e) ‖ ‖sup is a norm if and only if A is reduced in which case it is equivalent to
every residue norm on A.

The proofs are scattered over a number of lectures and homework assignments
in [RAG].

2. Berkovich spectra

2.1. Seminorms. Let G be an abelian group. A seminorm on G is a function

‖ ‖ : G −→ R
+

such that ‖0‖ = 0 and ‖x− y‖ ≤ ‖x‖ + ‖y‖ for x, y ∈ G. It is non-archimedean
if ‖x− y‖ ≤ max{‖x‖, ‖y‖}. If ‖·‖ is a seminorm on G then the collection of sets
{Uε}ε>0 defined for each ε > 0 by

Uε = {x ∈ G| ‖x‖ < ε}

forms a fundamental system of neighbourhoods at 0 giving rise to a unique topology
on G.

A seminorm ‖ ‖ on G is called a norm if ‖x‖ = 0 implies x = 0.
Two seminorms ‖ ‖ and ‖ ‖′ are said to be equivalent if there exist positive real

numbers C and C ′ such that ‖x‖ ≤ C‖x‖′ and ‖x‖′ ≤ C ′‖x‖ for every x ∈ G.
There is an obvious definition of a Cauchy sequence on a seminormed group

(G, ‖ ‖). The separated completion Ĝ of G is defined as the space of usual equiv-
alence classes of Cauchy sequences. Then the usual theory of completing pseudo-

metric spaces gives us a seminorm on Ĝ and a continuous map κ = κG : G → Ĝ
with κ(G) dense in G. It is easy to see that the following are equivalent

(a) The topology on G is Hausdorff.
(b) ‖ ‖ is a norm.

(c) The canonical map κ : G→ Ĝ is injective.
(d) The map G→ κ(G) induced by κ is a homeomorphism.

Let H be a subgroup of G. Define a seminorm on G/H in the usual way, viz., if
π : G→ G/H is the canonical surjective homomorphism, then

‖y‖ := inf
x∈π−1(y)

‖x‖ (y ∈ G/H).

One checks that

• ‖ ‖ : G/H → R+ is indeed a seminorm. It is called the residue seminorm
on G/H.

• The residue seminorm on G/H is a norm if and only if H is closed in G.

2.2. Banach rings. Let A be a ring with 1 (not necessarily commutative!). A
seminorm onA is a seminorm on ‖ ‖ on (A,+) such that ‖1‖ = 1, and ‖ab‖ ≤ ‖a‖‖b‖
for a, b ∈ A.

A seminorm on a ring A is called power multiplicative if ‖an‖ = ‖a‖n for a ∈ A
and n ≥ 1. A seminorm on A is called multiplicative if ‖ab‖ = ‖a‖‖b‖ for a, b ∈ A.

(A, ‖ ‖) is called a seminormed ring if ‖ ‖ is a seminorm on the ring A. It is a
normed ring if ‖ ‖ is a norm.

A Banach ring is a normed ring A that is complete with respect to its norm.
Let (A, ‖ ‖) be a Banach ring and a a closed two sided of A. Then A/a is a

Banach ring with respect to the residue norm. It follows that a if a is a maximal
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two sided ideal of A then it is closed since seminorms on division rings are necessarily
norms.

2.3. The spectrum of a Banach ring. Let (A , ‖ ‖) be a commutative Banach
ring with identity. A seminorm | | on A is said to be bounded if there exists C > 0
such that |f | ≤ C‖f‖ for all f ∈ A . The spectrum M (A ) is the set of all bounded
multiplicative seminorms on A .6 For each f ∈ A we have a map

Ψf : M (A ) −→ R+

given by | | 7→ |f |. Endow M (A ) with the weakest topology such that each Ψf is
continuous as f varies over A . We would like to think of M (A ) as a set of points
and so we play the usual notational trick that we are familiar with from algebraic
geometry, as well a rigid analytic geometry. Namely, if x ∈M (A ) and we wish to
regard x as a seminorm on A , then we write | |x for x.

Theorem 2.3.1. ([B, Thm. 1.2.1]) M (A ) is non-empty, Hausdorff and compact.

We will (hopefully) prove this next time.
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