BERKOVICH SPACES SEMINAR - LECTURE I

Date of Lecture: January 23, 2020

The infinite interval $[0, \infty)$ will be denoted \mathbf{R}_+ . It is convenient to include 0 in the set **N**. Thus, in this seminar, $\mathbf{N} = \{0, 1, 2, ...\}$.

The symbol \bigotimes is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

1. Summary of Tate algebras and Affinoid algebras

1.1. Absolute values. An absolute value | | on a field K is a map

$$| : K \to \mathbf{R}_+$$

such that for $x, y \in K$ we have

(a) $|x| = 0 \Leftrightarrow x = 0$,

- (b) |xy| = |x||y|,
- (c) $|x+y| \le |x| + |y|$.

If (c) can be replaced by the stronger condition

(c') $|x+y| \le \max\{|x|, |x|\},\$

then | | is called *non-archimedean*. It turns out, | | is non-archimedean if and only if $|n \cdot 1| \leq 1$ for $n \in \mathbb{N}$. The metric corresponding to such an absolute value is an *ultrametric*.

A valued field is a pair (K, | |) with K a field and | | an absolute value on it. There is clearly a notion, via the usual metric space completion via Cauchy sequences, of a completion \hat{K} of a valued field. This is easily seen to be a field, and | | extends to an absolute value on \hat{K} in a unique way.

On a field K, one always has the trivial absolute value, namely |x| = 1 for all $x \neq 0$.

For the rest of this section we will fix a complete non-archimedean valued field (K, | |), such that | | is non-trivial. Set $\mathscr{O}_K = \{x \in K | |x| \leq 1\}$ and $\mathfrak{m}_K = \{x \in K | |x| < 1\}$. Then \mathscr{O}_K is a valuation ring and \mathfrak{m}_K is its maximal ideal. The field

$$K := \mathscr{O}_K / \mathfrak{m}_K$$

is called the *residue field*¹ of the valued field K. Since K is complete, every finite extension L of K is complete. In greater detail, there is a unique extension of | | to L. Moreover L is complete with respect to this absolute value.² It is clear that | | extends uniquely to any algebraic closure \overline{K} of K.

¹The definition of \mathcal{O}_K , \mathfrak{m}_K and the notion of a residue field \widetilde{K} do not need the completeness hypothesis, and are in fact important in the non-complete case too.

²In general, when K is possibly not complete, if L is a finite extension, the number of extensions of || to L equals the number of maximal ideals in the semi-local artin ring $L \otimes_K \hat{K}$.

1.2. Visualising ultrametrics. There are ways of visualising ultrametrics via trees. Ramadas pointed me towards Jan Holly's AMM article [H], which you can access by clicking here. The article is highly recommended. Here is a sample picture from it.

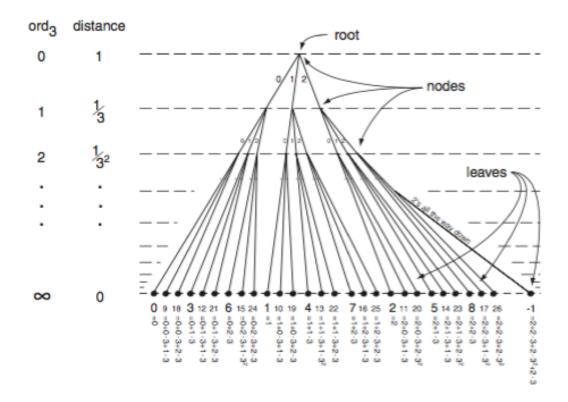


FIGURE 1. The 3-adic absolute value (see [H, Figure 2]).

1.3. Facts and definitions. Here is the promised summary.

1. For $n \in \mathbb{N}$ set

$$T_n := \left\{ \sum_{\boldsymbol{\nu} \in \mathbf{N}^n} c_{\boldsymbol{\nu}} \zeta_1^{\nu_1} \dots \zeta_n^{\nu_n} \in K[|\zeta_1, \dots, \zeta_n|] \, \left| \lim_{|\boldsymbol{\nu}| \to \infty} c_{\boldsymbol{\nu}} = 0 \right\} \right\}$$

where ζ_1, \ldots, ζ_n are free analytic variables over K. Here $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_n)$ and $|\boldsymbol{\nu}| = \nu_1 + \cdots + \nu_n$. T_n is called the *Tate algebra* of dimension n over K. On T_n we have a norm, the so-called *Gauss norm*, namely $|| ||: T_n \to \mathbf{R}_+$ given by

$$\left\|\sum_{\boldsymbol{\nu}\in\mathbf{N}^n}c_{\boldsymbol{\nu}}\boldsymbol{\zeta}^{\boldsymbol{\nu}}\right\|=\max_{\boldsymbol{\nu}}|c_{\boldsymbol{\nu}}|.$$

- 2. The map $\| \|$ induces an ultrametric on T_n making it a multiplicative Banach Kalgebra³ and $\| \|$. This means $\| \|$ satisfies (a) $\|f\| = 0$ if and only if f = 0, (b) $\|a\| = |a|$ for all $a \in K$, (c) $\|fg\| = \|f\|\|g\|$ for $f,g \in T_n$, and (d) $\|f+g\| \leq \max(\|f\|, \|g\|)$ and T_n is complete in the resulting metric. Property (c) is the reason $\| \|$ is called multiplicative and (d) the reason for the term ultrametric for the induced metric on T_n . (See [RAG, Theorem 1.2.1, Lecture 4] as well as [*ibid*, p. 3, Lecture 3] for quick proofs.)
- **3.** T_n is noetherian, of Krull dimension n [RAG, Theorem 1.2.1 Lecture 7]. It is a regular ring [RAG, Theorem 3.2.3, Lectures 9 and 10].
- 4. If \mathfrak{a} is an ideal⁴ in T_n , then we have a Noether normalisation for T_n/\mathfrak{a} , i.e. a finite injective K-algebra homomorphism

 $T_d \hookrightarrow T_n/\mathfrak{a}$

with d (necessarily) equal to the Krull dimension of T_n/\mathfrak{a} [RAG, Theorem 1.2.4 Lecture 7].

- 5. If \mathfrak{a} is an ideal of T_n then T_n/\mathfrak{a} is a *Jacobson ring*, i.e. every prime ideal in T_n/\mathfrak{a} is the intersection of the maximal ideals containing it [RAG, §§2.1, Lecture 8].
- **6.** More importantly, every ideal in T_n is closed [*ibid*, §§2.2]. This means that if $A = T_n/\mathfrak{a}$, $\mathfrak{a} \subset T_n$ an ideal, and $\alpha \colon T_n \twoheadrightarrow A$ the canonical surjection, then the map

$$\| \|_{\alpha} \colon A \to \mathbf{R}_+$$

given by

$$||x||_{\alpha} = \inf\{||f|| \mid f \in \alpha^{-1}(x)\}, \qquad (x \in A)$$

defines a norm $\| \|_{\alpha}$ on A.

7. An affinoid K-algebra is a K-algebra A which is the surjective image of a K-algebra map from some Tate algebra. From **6.** above, if $\alpha: T_n \twoheadrightarrow A$ then we have a residue norm $\| \|_{\alpha}$ on it. If $\beta: T_d \twoheadrightarrow$ is another surjective K-algebra homomorphisms then $\| \|_{\alpha}$ and $\| \|_{\beta}$ are equivalent norms on A in the sense that there exist constants C > 0 and C' > 0 such that $C \| \cdot \|_{\beta} \le \| \cdot \|_{\alpha} \le C' \| \cdot \|_{\beta}$. Moreover any K-algebra map between affinoid algebras is continuous. The complete statement is:

Theorem: [RAG, Corollary 2.2.5, Lecture 11] Let A and B be affinoid algebras endowed with residue norms arising from surjective maps from Tate algebras, and let $\varphi: A \to B$ be a K-algebra homomorphism. Then φ is continuous. In particular if we have two surjective homomorphisms from Tate algebras to A, say $\alpha: T_n \twoheadrightarrow A$ and $\beta: T_m \twoheadrightarrow A$, then $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are equivalent. (See also [ibid, Theorem 2.2.4].)

³There is some confusion in the literature regarding the use of the term Banach K-alegbra. The way Berkovich uses the term *Banach ring* in [B], the requirement that $\| \|$ be multiplicative is not necessary. On the other hand, for a number of authors, a Banach algebra is by definition multiplicative. So, to hedge my bets, I have called T_n a multiplicative Banach algebra

⁴An ideal will mean a proper ideal, i.e., $\mathfrak{a} \neq T_n$.

8. Consider the "unit polydisc" in \overline{K}^n ,

$$\mathbb{B}^{n}(\overline{K}) = \left\{ (x_{1}, \dots, x_{n}) \in \overline{K}^{n} \mid |x_{i}| \leq 1, \ 1 \leq i \leq n \right\}.$$

For $f \in T_n$, and $\boldsymbol{x} \in \mathbb{B}^n(\overline{K})$, $f(\boldsymbol{x})$ makes sense as an element of \overline{K} . Indeed, if $\boldsymbol{x} = (x_1, \ldots, x_n) \in \mathbb{B}^n(\overline{K})$ then $K(x_1, \ldots, x_n)$ is a finite extension of K, and since K is complete, so is $K(x_1, \ldots, x_n)$, whence the power series f evaluated at \boldsymbol{x} converges.⁵ It turns out that f attains a maximum on $\mathbb{B}^n(\overline{K})$ and the following formula, the so-called *Maximum Modulus Principle*, holds (see [RAG, §3.2, Lecture 4]:

$$||f|| = \max \left\{ |f(\boldsymbol{x})| \mid \boldsymbol{x} \in \mathbb{B}^n(\overline{K}) \right\}.$$

9. For $\boldsymbol{x} \in \mathbb{B}^n(\overline{K})$, let $\mathfrak{m}_{\boldsymbol{x}}$ be the kernel of the evaluation map $f \mapsto f(\boldsymbol{x})$. Then $\mathfrak{m}_{\boldsymbol{x}} \in \operatorname{Max}(T_n)$, the maximal spectrum of T_n . We thus have a map $\mathbb{B}^n(\overline{K}) \to \operatorname{Max}(T_n)$ given by $\boldsymbol{x} \mapsto \mathfrak{m}_{\boldsymbol{x}}$. It turns out the map is surjective (see [RAG, Theorem 1.3.1, Lecture 7]) and the proof of *loc.cit.* shows that the fibres of this map are the orbits of $\mathbb{B}^n(\overline{K})$ under $\operatorname{Gal}(\overline{K}/K)$. It follows that the Gauss norm on T_n can also be computed by the fomula:

$$\|f\| = \sup_{\boldsymbol{x} \in \operatorname{Max}(T_n)} |f(\boldsymbol{x})| = \max_{\boldsymbol{x} \in \operatorname{Max}(T_n)} |f(\boldsymbol{x})| \qquad (f \in T_n)$$

where $f(\boldsymbol{x})$ is the image of f in the field $K(\boldsymbol{x}) := T_n/\mathfrak{m}_{\boldsymbol{x}}$.

10. With **9**. in mind we define the sup norm $\| \|_{sup}$ on an affinoid algebra A by the formula

$$\|f\|_{\sup} := \sup_{\boldsymbol{x} \in \operatorname{Max}(A)} |f(\boldsymbol{x})| \qquad (f \in A).$$

Here (and everywhere) we write \mathfrak{m}_{x} for $x \in Max(A)$ when we think of it as a maximal ideal, and f(x) is the image of f in $K(x) := A/\mathfrak{m}_{x}$. It turns out that for $f \in A$:

(1.3.1)
$$||f||_{\sup} = \sup_{\boldsymbol{x} \in \operatorname{Max}(A)} |f(\boldsymbol{x})| = \max_{\boldsymbol{x} \in \operatorname{Max}(A)} |f(\boldsymbol{x})|.$$

Recall from noether normalisation that $K(\boldsymbol{x})$ is finite over K and hence $|\cdot|$ extends uniquely from K to $K(\boldsymbol{x})$. Note that $|| ||_{\sup}$ is an "intrinsic" function, unlike the various residue norms on A.

The sup norm need not be a norm. Indeed, it is not hard to see that $||f^n||_{\sup} = ||f||_{\sup}^n$, and hence if $f \neq 0$ is nilpotent, we have $||f||_{\sup} = 0$. If A is reduced then the sup norm is indeed a norm. Here are some well-known properties of the sup norm.

- (a) The sup norm $\| \|_{sup}$ on A is a semi-norm.
- (b) $\| \|_{\sup}$ is power multiplicative, i.e. $\| f^n \|_{\sup} = \| f \|_{\sup}^n$ for $f \in A$.
- (c) If $\alpha: T_n \twoheadrightarrow A$ is a surjective K-algebra homomorphism, then

$$||f||_{\sup} \le ||f||_{\alpha} \qquad (f \in A).$$

In particular the map $(A, || ||_{\alpha}) \to (A, || ||_{\sup})$ which is the identity on the underlying sets, is continuous.

(d) $||f||_{sup} = 0$ if and only if f is nilpotent.

⁵It should be pointed out that \overline{K} is not in general complete, even if K is.

(e) $\| \|_{\sup}$ is a norm if and only if A is reduced in which case it is equivalent to every residue norm on A.

The proofs are scattered over a number of lectures and homework assignments in [RAG].

2. Berkovich spectra

2.1. Seminorms. Let G be an abelian group. A seminorm on G is a function

$$\| \| : G \longrightarrow \mathbf{R}_{+}$$

such that ||0|| = 0 and $||x - y|| \le ||x|| + ||y||$ for $x, y \in G$. It is non-archimedean if $||x - y|| \le \max\{||x||, ||y||\}$. If $||\cdot||$ is a seminorm on G then the collection of sets $\{U_{\epsilon}\}_{\epsilon>0}$ defined for each $\epsilon > 0$ by

$$U_{\epsilon} = \{ x \in G | \|x\| < \epsilon \}$$

forms a fundamental system of neighbourhoods at 0 giving rise to a unique topology on G.

A seminorm || || on G is called a *norm* if ||x|| = 0 implies x = 0.

Two seminorms || || and || ||' are said to be *equivalent* if there exist positive real numbers C and C' such that $||x|| \leq C ||x||'$ and $||x||' \leq C' ||x||$ for every $x \in G$.

There is an obvious definition of a Cauchy sequence on a seminormed group (G, || ||). The separated completion \widehat{G} of G is defined as the space of usual equivalence classes of Cauchy sequences. Then the usual theory of completing pseudometric spaces gives us a seminorm on \widehat{G} and a continuous map $\kappa = \kappa_G \colon G \to \widehat{G}$ with $\kappa(G)$ dense in G. It is easy to see that the following are equivalent

- (a) The topology on G is Hausdorff.
- (b) $\| \|$ is a norm.
- (c) The canonical map $\kappa \colon G \to \widehat{G}$ is injective.
- (d) The map $G \to \kappa(G)$ induced by κ is a homeomorphism.

Let H be a subgroup of G. Define a seminorm on G/H in the usual way, viz., if $\pi: G \to G/H$ is the canonical surjective homomorphism, then

$$||y|| := \inf_{x \in \pi^{-1}(y)} ||x|| \qquad (y \in G/H).$$

One checks that

- $\| \|: G/H \to \mathbf{R}_+$ is indeed a seminorm. It is called the *residue seminorm* on G/H.
- The residue seminorm on G/H is a norm if and only if H is closed in G.

2.2. Banach rings. Let A be a ring with 1 (not necessarily commutative!). A seminorm on A is a seminorm on || || on (A, +) such that ||1|| = 1, and $||ab|| \le ||a|| ||b||$ for $a, b \in A$.

A seminorm on a ring A is called *power multiplicative* if $||a^n|| = ||a||^n$ for $a \in A$ and $n \ge 1$. A seminorm on A is called *multiplicative* if ||ab|| = ||a|| ||b|| for $a, b \in A$.

(A, || ||) is called a *seminormed ring* if || || is a seminorm on the ring A. It is a *normed ring* if || || is a norm.

A Banach ring is a normed ring A that is complete with respect to its norm.

Let (A, || ||) be a Banach ring and \mathfrak{a} a closed two sided of A. Then A/\mathfrak{a} is a Banach ring with respect to the residue norm. It follows that a if \mathfrak{a} is a maximal

two sided ideal of A then it is closed since seminorms on division rings are necessarily norms.

2.3. The spectrum of a Banach ring. Let $(\mathscr{A}, || ||)$ be a *commutative* Banach ring with identity. A seminorm $|| | \text{ on } \mathscr{A} \text{ is said to be bounded if there exists } C > 0$ such that $|f| \leq C ||f||$ for all $f \in \mathscr{A}$. The spectrum $\mathscr{M}(\mathscr{A})$ is the set of all bounded multiplicative seminorms on \mathscr{A} .⁶ For each $f \in \mathscr{A}$ we have a map

$$\Psi_f \colon \mathscr{M}(\mathscr{A}) \longrightarrow \mathbf{R}_+$$

given by $|| \mapsto |f|$. Endow $\mathscr{M}(\mathscr{A})$ with the weakest topology such that each Ψ_f is continuous as f varies over \mathscr{A} . We would like to think of $\mathscr{M}(\mathscr{A})$ as a set of points and so we play the usual notational trick that we are familiar with from algebraic geometry, as well a rigid analytic geometry. Namely, if $x \in \mathscr{M}(\mathscr{A})$ and we wish to regard x as a seminorm on \mathscr{A} , then we write $||_x$ for x.

Theorem 2.3.1. ([B, Thm. 1.2.1]) $\mathcal{M}(\mathcal{A})$ is non-empty, Hausdorff and compact.

We will (hopefully) prove this next time.

References

- [B] V. G. Bervkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, no. 33, AMS, Providence, Rhode Island, 1990.
- [H] J.E. Holly, Pictures of Ultrametric Spaces, the p-adic Numbers, and Valued Fields, American Mathematical Monthly, October 2001. Available at https://www.colby.edu/math/ faculty/Faculty_files/hollydir/Holly01.pdf.
- [RAG] Course on Rigid Analytic Geometry at CMI. https://www.cmi.ac.in/~pramath/ teaching.html#RAG.

 $^{^{6}\!\}mathrm{Note}$ that we are considering seminorms and not just norms. On the other hand, these seminorms are multiplicative.