Arithmetic on abelian varieties

Pramathanath Sastry

Chennai Mathematical Institute

June 2016
GANITA conference for Kumar Murty

What is an Abelian variety?

This is a report on joint work with V.K. Murty.

- An Abelian variety is an irreducible, smooth projective group variety.
- Elliptic curves (dimension 1),
- Jacobian of a curve of genus g (dimension g).
- In dimension 4 and higher, not every Abelian variety is a Jacobian.
- However, every simple Abelian variety is a quotient of a Jacobian.

The dual abelian variety

Fix an abelian variety A over a field k. The dual abelian variety \widehat{A} is the "space" of isomorphism classes of line bundles L on A which are algebraically equivalent to the trivial line bundle \mathscr{O}_{A} on A in the following sense:

- Two line bundles L_{0} and L_{1} on A are algebraically equivalent if there is a connected variety (or connected algebraic scheme) S over k, two k-rational points s_{0} and s_{1} of S such, and a line bundle \mathscr{L} on $A \times S$ such that $\left.\mathscr{L}\right|_{A \times\left\{s_{0}\right\}} \cong L_{0}$ and $\left.\mathscr{L}\right|_{A \times\left\{s_{1}\right\}} \cong$ L_{1}.

(Mumford)

A line bundle L on A is algebraically equivalent to \mathscr{O}_{A} if and only if $t_{a}^{*} L \cong L$ for every $a \in A$.

Our goal is to realise \widehat{A} as a subvariety of a suitable Grassmannian given minimal data about A. E.g. $V=\mathrm{H}^{0}(A, M)$ where M is a very ample line bundle, $V_{1}=\mathrm{H}^{0}(A, M \otimes M)$, the natural map $\mu: V \otimes_{k} V \rightarrow V_{1}$ and some important subspaces of V.

Note: We are not given A or M or $M \otimes M$.

- The Grassmannian in which \widehat{A} will be embedded will be a Grassmannian of subspaces of V of a certain fixed dimension.
- Will say more on this later.

Hilbert polynomials

Suppose X is a complete k-scheme, L_{0} a line bundle on it, and \mathscr{F} a coherent \mathscr{O}_{X} - module. Then the Grothendieck-Riemann-Roch theorem shows that the expression $\Psi_{\mathscr{F}}(n)\left(=\Psi_{\mathscr{F}}^{L_{0}}(n)\right)$ for integers n, given by

$$
n \mapsto \chi\left(X, \mathscr{F} \otimes L_{0}^{n}\right) \quad(n \in \mathbb{Z})
$$

is a polynomial expression in n.

Definition

The polynomial $\Psi_{\mathscr{F}} \in \mathbb{Q}[t]$ is called the Hilbert polynomial of \mathscr{F} with respect to L_{0}.
If Z is a closed subscheme of X, the Hilbert polynomial of Z is $\Psi_{\mathscr{O}_{Z}}$. We will denote it $\Phi_{Z}(t)$.

- Have $\operatorname{deg} \Psi_{\mathscr{F}}=\operatorname{dim} \operatorname{Supp}(\mathscr{F})$. In particular, if L is a line bundle,

$$
\operatorname{deg} \psi_{L}=\operatorname{dim} X
$$

- If two line bundles (or for that matter closed subschemes) are algebraically equivalent then it is well known that they have the same Hilbert polynomial with respect to L_{0}. The converse is not true - the Quot scheme/Hilbert scheme for a fixed polynomial Ψ need not be connected!
- For us L_{0} will be an ample line bundle, in which case $\Psi_{\mathscr{F}}(n)$ can be shown to be a polynomial in n without appealing to GRR (Hilbert showed it - long before Hirzebruch or Grothendieck).

Riemann-Roch

Fix an abelian variety A of dimension g over a field k.

- (Riemann-Roch for Abelian Varieties) Let L be a line bundle on A and D any divisor such that $\mathscr{O}(D) \cong L$. Then

$$
\chi(A, L)=\frac{\int_{A} D^{g}}{g!}
$$

- So, with D_{0} such that $L_{0} \cong \mathscr{O}\left(D_{0}\right)$ we have:

$$
\Psi_{L}(n)=\frac{\int_{A}\left(D+n D_{0}\right)^{g}}{g!}
$$

- In particular (with $\chi_{0}:=\chi\left(A, L_{0}\right)$):

$$
\Psi_{L_{0}}(t)=(1+t)^{g} \chi_{0}
$$

Algebraically trivial bundles

As we pointed out, if $L \sim_{\text {alg }} L^{\prime}$, then $\Psi_{L}=\Psi_{L^{\prime}}$, but that the converse is not in general true. There are important situations (which we exploit) where this is true. First, for a line bundle L let $K(L)=\left\{a \in L \mid t_{a}^{*} L \cong L\right\}$.

Proposition

Let L be a line bundle on A, and $d=\operatorname{dim} K(L)$. Then
(a) (Moonen-Van der Geer) $\Psi_{L}(t)=t^{d} f(t), f(0) \neq 0, f \in \mathbb{Q}[t]$.
(b) $L \sim_{\text {alg }} \mathscr{O}_{A} \Longleftrightarrow \Psi_{L}(t)=\chi_{0} t^{g} \Longleftrightarrow \Psi_{L}(t)=c t^{g}$, with c a constant.

In particular, algebraic equivalence with the trivial bundle is completely characterised by the Hilbert polynomial.

Ample bundles

Hilbert polynomials also let us figure our when line bundles are ample on and abelian variety.

Theorem (Mumford-Kempf-Ramanujam)*

(a) L is ample if and only if all its complex roots are negative real numbers.

$$
\text { (b) } L \text { ample } \Longrightarrow \Psi_{L}(n)=\mathrm{H}^{0}\left(A, L \otimes L_{0}^{n}\right), n \geq 0
$$

Corollary to the last two theorems

$$
L \sim_{\text {alg }} L_{0} \Longleftrightarrow \Psi_{L}(t)=\chi_{0}(1+t)^{g} .
$$

- L a line bundle on $A \Longrightarrow \Psi_{L^{-1}}(t)=(-1)^{g} \Psi_{L}(t)$ (Use the identity $\left(-D+n D_{0}\right)^{g}=(-1)^{g}\left(D-n D_{0}\right)^{g}$ and GRR.)
- Suppose $L_{0}=\mathscr{O}_{A}(H)$, where H is effective. The exact sequence

$$
0 \longrightarrow \mathscr{O}(-H) \longrightarrow \mathscr{O}_{A} \longrightarrow \mathscr{O}_{H} \longrightarrow 0
$$

gives us the formula for $\Phi_{H}(t)$ (the Hilbert polynomial of H)

$$
\Phi_{H}(t)=\chi_{0}\left[t^{g}-(t-1)^{g}\right] .
$$

- In particular, all effective divisors algebraically equivalent to H have Hilbert polynomial

$$
\Phi(t):=\chi_{0}\left[t^{g}-(t-1)^{g}\right] .
$$

The embedding

- Fix $N \geq 2$ and set $V=\mathrm{H}^{0}(A, \mathscr{O}(N H))$.
- For $D \geq 0$ and $D \sim_{\text {alg }} H$, let

$$
W_{D}:=\mathrm{H}^{0}(\mathscr{O}(N H-D)) \subset V
$$

- Have $N H-D \sim_{\text {alg }}(N-1) H$. Hence
- NH - D is ample.
$-\operatorname{dim} W_{D}=\chi_{0}(N-1)^{g}=r($ say $)$.
- For $N \geq 3 g+2$, the map $D \mapsto W_{D}$ gives an embedding Div $\hookrightarrow \operatorname{Gr}_{r}(V)$,
where
$-\operatorname{Div}\left(=\operatorname{Div}^{L_{0}}\right)=\left\{D \geq 0 \mid D \sim_{\text {alg }} H\right\}$.
- $\operatorname{Gr}_{r}(V)=$ Grassmannian of r-dimensional subspaces of V

The Grothendieck-Matsusaka method

(a)(Mumford) The map $\phi_{L_{0}}$ is an isogeny.
(b) The map π is surjective, and the fibre of π over [L] is the complete linear system associated with the ample bundle $L \otimes L_{0}$. (c) If L_{0} is a principal polarisation, i.e., $\operatorname{dim} \mathrm{H}^{0}\left(A, L_{0}\right)=1$, then all arrows in the above diagram are isomorphisms.

Let $N \geq 3$ and $V=\mathrm{H}^{0}\left(A, L_{0}^{N}\right)=\mathrm{H}^{0}(A, \mathscr{O}(N H))$. For each effective divisor D we have associated a subspace $W_{D}=\mathrm{H}^{0}(\mathscr{O}(N H-D)) \subset V$. One can go the other way.

Definition

Suppose $0 \neq W \subset V$ is a k-vector space. Let \mathfrak{d} be the complete linear system associated with L_{0}^{N} and $\mathfrak{d}_{W} \subset \mathfrak{d}$ the sub-linear system given by W. Define Δ_{W} to be the fixed component of \mathfrak{d}_{W}.

Note that for a prime divisor Z in A,

$$
\operatorname{ord}_{z} \Delta_{Q}=\min _{s \in W \backslash\{0\}}\left\{\operatorname{ord}_{Z}(s)+\operatorname{ord}_{z}(N H)\right\}
$$

Fact

$0 \neq W_{1} \subset W_{2} \subset V \Longrightarrow \Delta_{W_{2}} \leq \Delta_{W_{1}}$.

Definition

For $D \geq 0$, let

$$
D^{*}:=\Delta_{W_{D}}
$$

Would like D to equal D^{*}. The exact relationship is

Proposition

Let $D \geq 0$ and F the fixed component of the complete linear system defined by $\mathscr{O}(N H-D)=L_{0}^{N} \otimes \mathscr{O}(-D)$. Then

$$
D^{*}=D+F
$$

In particular $D^{*} \geq D$, and $D^{*}=D$ if and only if the complete linear system $|N H-D|$ has no fixed components.

In this slide, D, D^{\prime} etc are effective divisors.

- $W_{D^{*}}=W_{D}$.
- $D \leq D^{\prime} \Longrightarrow W_{D} \supset W_{D^{\prime}}$.
- Suppose $\left|N H-D^{\prime}\right|$ has no fixed components. Then $W_{D} \supset W_{D^{\prime}} \Longrightarrow D \leq D^{\prime}$.

The flip operation

When is $W=W_{D}$ for some $D \geq 0$? The answer involves the flip operation.

Definition

Suppose W is a non-zero subspace of V and $0 \neq f \in W$. Define a subspace $W^{\prime}\left(=W^{\prime}(f)\right)$ by the formula

$$
W^{\prime}=\{s \in V \mid \mu(s \otimes t) \in \mu(f \otimes V), t \in W\} .
$$

- Note: $f \in W^{\prime}$, and so it makes sense to compute $W^{\prime \prime}=$ $\left(W^{\prime}(f)\right)^{\prime}(f)$.

Fact

$$
W=U^{\prime}, U \neq 0 \Longrightarrow W=W_{D} \text { for some } D \geq 0 .
$$

More precisely, we have (all "flips" with respect to f as in the statement):

Let W be a subspace of $V, 0 \neq f \in W$, of V and E the effective divisor $N H-\Delta_{W}+(f)$.

- Turns out, $W^{\prime}=W_{E}$.
- In particular, if $W=W^{\prime \prime}$, then $W=W_{D}$ for some $D \geq 0$.
- The condition $W=W^{\prime \prime}$ can be tested using linear algebra.

Absolutely simple abelian varieties

Suppose A is absolutely simple, L a line bundle on A, D a divisor on A.

- Either $L \sim_{\text {alg }} \mathscr{O}_{A}$ or L is non-degenerate, i.e., $K(L)$ is finite.
- L ample $\Longleftrightarrow L \neq \mathscr{O}_{A}$ and $H^{0}(A, L) \neq 0$.
- D ample $\Longleftrightarrow D \equiv D^{\prime}, D^{\prime}>0$.
- $h^{0}(L)>1 \Longrightarrow$ the complete linear system given by L has no fixed components.

Assumptions and strategy

Recall we are trying to look for the locus of Div in a Grassmanian of subspaces of $V=\mathrm{H}^{0}\left(L_{0}^{N}\right)$. From now on we will assume

- A is absolutely simple of dimension g and as before
- L_{0} is a principal polarization, i.e., $\mathrm{H}^{0}\left(L_{0}\right)=1$.

Preliminary Strategy

Let a non-zero subspace W of V be given. Pick $0 \neq f \in W$.

- Check if $W=W^{\prime \prime}$. So we know $W=W_{D}$ for some $D \geq 0$.
- For $j=0, \ldots, g$ find a subspace $T_{j}(W)$ by linear algebraic means so that $T_{j}(W)=W_{D+j H}$.
- Check that $\operatorname{dim} T_{j}(W)=\chi_{0}(N-j-1)^{g}=(-1)^{g} \Psi(j-N)$. This will force $\Psi_{\mathscr{O}(D)}(t)$ to equal $\Psi(t)=\chi_{0}(1+t)^{g}$.

$$
\begin{aligned}
& r=(N-1)^{g} \\
& \gamma_{H}: a \mapsto\left(t_{a}^{*} D\right) \\
& \phi_{L_{0}}: a \mapsto\left[t_{a}^{*} L_{0} \otimes L_{0}^{-1}\right]
\end{aligned}
$$

Forward and backward shifts

Goal: Given $0 \neq W \subset V$, define $T_{j}(W) \subset W$.
$\left(T_{j}\left(W_{D}\right) "=" W_{D+j H}\right)$. Fix $j \geq 0$. Assume we know the canonical map $\mu: V \otimes_{k} V \rightarrow \mathrm{H}^{0}\left(A, L_{0}^{2 N}\right)$, and the spaces $\mathrm{H}^{0}\left(L_{0}^{j}\right)$ and $H^{0}\left(L_{0}^{N-j}\right)$. (We only need $j=3,4,5$).

- $T_{j}(W):=\left\{s \in W \mid \mu(s \otimes t) \in \mu\left(W \otimes_{k} H^{0}\left(L_{0}^{N-j}\right)\right), \forall t \in V\right\}$.
- $\mu_{j}(W):=\mu\left(W \otimes_{k} H^{0}\left(L_{0}^{j}\right)\right) \subset H^{0}\left(L_{0}^{2 N}\right) .\left(\mu_{j}\left(W_{D}\right)^{\prime \prime}=" W_{D-j H}\right)$
- $T_{j}\left(W_{D}\right) \subset W_{D+j H}$
- $\mu_{j}\left(W_{D}\right) \subset W_{D-j H}$ provided $D-j H$ is effective.

m-regularity

- A coherent sheaf on a projective scheme $(X, \mathscr{O}(1))$ is m-regular if $\mathrm{H}^{i}(X, \mathscr{F}(m-i))=0$ for $i \geq 1$.
- (Mumford) If \mathscr{F} is m-regular then it is $(m+1)$-regular and the natural map $\mathrm{H}^{0}(\mathscr{F}(m)) \otimes_{k} \mathrm{H}^{0}(\mathscr{O}(1)) \rightarrow \mathrm{H}^{0}(\mathscr{F}(m+1))$ is surjective.
- Returning to our abelian variety A, if L is ample then L is g regular $(g=\operatorname{dim} A)$. Indeed, we only have to check

$$
\mathrm{H}^{i}(A, L(g-i))=0 \quad(\text { for } 0<i \leq g)
$$

In that range $g-i \geq 0$, whence $L \otimes \mathscr{O}(g-i)$ is ample.

- We did not need absolute simplicity of A for the above, but if it is (our running assumption), then $h^{0}(L)>1$ ensures ampleness of L.
- Let $D, D^{\prime} \geq 0$ with $\operatorname{dim} W_{D}>1$. Fix $j \in\{1, \ldots, N-3\}$. Then

$$
T_{j}\left(W_{D^{\prime}}\right)=W_{D} \text { and } \mu_{j}\left(W_{D}\right)=W_{D^{\prime}} \Longrightarrow D=D^{\prime}+j H
$$

- Let $3 \leq j<\frac{N}{g+1}$. Suppose D is an effective divisor such that $L_{0}^{N-j} \otimes \mathscr{O}(-D)$ is 0 -regular with respect to L_{0}^{j}. Then

$$
T_{j}\left(W_{D}\right)=W_{D+j H} \quad \text { and } \quad \mu_{j}\left(W_{D+j H}\right)=W_{D}
$$

- The above is (of course) for A absolutely simple.
- Recall also that if $W=W^{\prime \prime}$, then $W=W_{D}$ for some $D \geq 0$.
- $L_{0}^{N-j} \otimes \mathscr{O}(-D)$ is 0-regular $\Longleftrightarrow L_{0}^{N-j-g} \otimes \mathscr{O}(-D)$ is g-regular. A sufficient condition is that $h^{0}\left(L_{0}^{N-j-g} \otimes \mathscr{O}(-D)\right)>1$. This is ensured when $T^{j+g}\left(W_{D}\right)>1$.

From now on

- $N=6 g+6, r=(6 g+5)^{g}$.
- $V=H^{0}\left(A, L_{0}^{N}\right)$.

Assumptions

Assume we know

- $\mu: V \otimes_{k} V=H^{0}\left(L_{0}^{N}\right) \otimes_{k} H^{0}\left(L_{0}^{N}\right) \rightarrow \mathrm{H}^{0}\left(L_{0}^{2 N}\right)$,
- $\mathrm{H}^{0}\left(L_{0}^{j}\right)$ and $\mathrm{H}^{0}\left(L_{0}^{N-j}\right)$ for $j=3,4,5$.

Consider the embedding:

$$
\operatorname{Gr}_{r}(V) \hookrightarrow \operatorname{Div}
$$

Given a subspace $W \subset V$ of dimension r, i.e., a point $x_{w} \in \operatorname{Gr}_{r}(V)$, how does one decide whether $x_{w} \in \operatorname{Div}$ or not?

Let $W_{0}=W$. Get $W_{1}, W_{2}, W_{3}, W_{4}$ and W_{5} as follows:

Define $W_{g}, W_{g-1}, \ldots, W_{6}$, via the formula

$$
W_{i+3}=T_{3}\left(W_{i}\right) \quad(i=3, \ldots, g-3)
$$

Impose the following conditions:
(1) $W_{g} \subset W_{g-1} \subset \ldots \subset W_{2} \subset W_{1} \subset W_{0}$.
(2) $T_{3}\left(W_{1}\right)=W_{4}, T_{3}\left(W_{2}\right)=W_{5}$.
(3) $\mu_{4}\left(W_{4}\right)=\mu_{5}\left(W_{5}\right)=W_{0}$.
(4) $\mu_{3}\left(W_{i}\right)=W_{i-3}, i=3, \ldots, g$.
(6) $\operatorname{dim}_{k} W_{i}=(N-1-i)^{g}=(6 g+5-i)^{g}, i=0, \ldots, g$.
(0) $\operatorname{dim}_{k} T_{3}^{i}\left(W_{3}\right)=(6 g+2-3 i)^{g}, i=1, \ldots, g$.
(1) $W_{i}=\left(W_{i}^{\prime}(f)\right)^{\prime}(f), i=1, \ldots g$, for some (and hence every) non-zero $f \in W_{g}$.

Let W be an r-dimensional subspace of V and x_{W} the corresponding point in $\operatorname{Gr}_{r}(V)$. Then $x_{w} \in \operatorname{Div}$ if and only if W satisfies conditions (1)-(7) above.

Thank you!

Pramathanath Sastry
 Arithmetic on abelian varieties

Addition

(1) Let $F=\mu\left(T_{3}^{g+1}\left(W^{1}\right) \otimes_{k} T_{3}^{g+1}\left(W^{2}\right)\right)$. One can show:

- $F \subset V$. (If $W^{1}=W_{D}$, and $W^{2}=W_{E}$, then $F=W_{D+E}$.)
- $\operatorname{dim} F=(N-2)^{g}=(6 g+4)^{g}$.
- $0 \neq \mu_{3}\left(T_{5}(F)\right) \subset F$.
(2) Pick $0 \neq \varphi \in \mu_{3}\left(T_{5}(F)\right)$. Use φ to compute F^{\prime}, i.e., $F^{\prime}=$ $F^{\prime}(\varphi)$. Note that $\varphi \in F^{\prime}$, whence $F^{\prime} \neq 0$.
(3) Pick $0 \neq \psi \in F^{\prime}$ such that

$$
\mu\left(\psi \otimes \mathrm{H}^{0}(\mathscr{O}(3 H))\right) \subset\left(\mu_{3} T_{5} F\right)^{\prime}
$$

One can show that such a ψ exists and is unique up to a nonzero scalar multiple.
(9) Let $U=\{s \in V \mid \mu(\varphi \otimes s) \in \mu(\psi \otimes F)\}$. (Theory shows that $U \subset V$.)
(3) Set $W=\mu_{4}\left(T_{3}(U)\right)$. Then $W=W^{1} * W^{2}$. In other words

$$
x_{w}=x_{w_{1}}+x_{w_{2}} .
$$

