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(−)!

Grothendieck Duality

At its heart Grothendieck Duality is about creating a
pseudo-functor (−)! on a suitable category of algebraic geometric
objects (e.g., noetherian schemes, algebraic spaces, stacks . . . )
such that

For proper maps f , f ! is a right adjoint to Rf∗

For “general” maps, f ! is supposed to be the right adjoint to
Rf! – the direct image with proper supports.

f ! it behaves well with respect to étale localizations of the
source and with respect to flat base change.
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Two approaches

The concrete approach (Grothendieck-Hartshorne). This is the
approach in Hartshorne’s Residues and Duality [RD]. Dualizing
complexes and residual complexes play a major part. For a
smooth map f , the functor f ! is defined to be f ∗(−)⊗ Ωd

f [d ],
d= relative dimension of f . Similarly definitions are given for
finite maps, projective space, . . . . The game is to make it all
hang together to form a pseudo-functor.

The abstract approach (Deligne-Verdier). This is the approach
first started by Deligne in the appendix to [RD], but taken to
a different level by Lipman, Neeman, and their collaborators.
“Upper shriek” is defined by what is does, not by fiat.
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The RD-approach, i.e. the original approach

Here are the ingredients (for f : X → Y of finite type)

For f smooth of relative dimension d , decree (by fiat)

f !F := f ∗F
L
⊗ Ωd

X/Y [d ].

Recall Ωd
X/Y [d ] is the complex

•
−d th-spot
��

. . . // 0 // Ωd
X/Y

// 0 // . . . // 0 // . . .

For f finite set f !F := RH om•Y (Rf∗OX ,F ).
.
.
.
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Locally (in a neighbourhood of each point) f factors as follows:

X

f   @
@@

@@
@@

@ U? _ �
�

closed immersion
↓
i // Z

p←smooth��~~
~~
~~
~

Y

U open in X

Problem: One can have an open cover {Uα} of X , objects
Gα ∈ D(Uα) with isomorphisms ϕαβ : Gβ|Uαβ −→∼ Gα|Uαβ
satisfying ϕαβ ◦ϕβγ = ϕαγ , and no global G ∈ D(X ) such that
G |Uα ∼= Gα, . . . .

This is where dualising and residual complexes come in.
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Note we could have finite maps which are smooth (étale maps).
One has to check compatibilities.

Dualising and residual complexes are used in a very complicated
way to “construct” traces.
When f is proper, would like a map Trf : Rf∗f !F → F such that
(f !F , Trf ) represents HomD(Y )(Rf∗(−),F ). More on that later.
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HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G )

Duality

For a proper map of schemes f : X → Y we want a right adjoint to
Rf∗ : Dqc(X )→ Dqc(Y ). The following theorem, in greater
generality than stated below, is due to Neeman (JAMS, 1996).

Theorem (Duality)

Let f : X → Y be a proper map of quasi-compact quasi-separated
schemes. Then Rf∗ : Dqc(X )→ Dqc(Y ) has a right adjoint

f ! : Dqc(Y )→ Dqc(X ).

In other words, we have a co-adjoint unit (the “trace map”)
Trf : Rf∗f ! → 1Dqc(Y ) inducing a bifunctorial isomorphism

HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G ).

Pramathanath Sastry Residues and Duality
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HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G )

We are only interested in noetherian schemes and finite type maps.
The important relation is

HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G )

for f : X → Y proper.

Pramathanath Sastry Residues and Duality
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HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G )

The relationship between Trf and f ! (when f is proper) can be
deconstructed as follows:

Given a map F
ϕ−→ f !G , with F ∈ Dqc(X ) and G ∈ Dqc(Y ), one

can form the composite ψ = Trf (G )◦Rf∗(ϕ):

Rf∗(F )

ψ
((QQ

QQQ
QQQ

QQQ
QQQ

Q

Rf∗(ϕ) // Rf∗f !G

Trf (G )
��

G

The assertion is that
ϕ 7→ ψ

is bijective, giving the required isomorphism

HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G ).
.
.
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HomDqc(X )(F , f !G ) −→∼ HomDqc(Y )(Rf∗F , G )

There is a sheaf version.

Theorem

Let f : X → Y be a pseudo-coherent proper map of quasi-compact
separated schemes. Then Rf∗ : D+

qc(X ) → D+
qc(Y ) has a right ad-

joint f !. Furthermore

Rf∗RH omX (x , f !y) −→∼ RH omY (Rf∗(x), y).

This fails for unbounded complexes! In other words flat base
change for (−)! fails for unbounded complexes (for this is really
open base change for “upper-shriek”). Neeman returns to this
issue in a recent manuscript.

Pramathanath Sastry Residues and Duality
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Lf ∗(−)
L
⊗ f !OY versus f !

Let f be proper and let

φ : Lf ∗(−)
L
⊗ f !OY −→ f !

be defined by the commutativity of

Rf∗(Lf ∗(F )
L
⊗ f !OY )

Rf∗(φ(F ))

��

F
L
⊗ Rf∗f !OY˜

proj. formula
oo

1⊗Trf
��

Rf∗f !(F )
Trf

// F

(F∈Dqc(Y ))

(
Rf∗f ! Trf−−−→ 1Dqc(Y )

)
= the co-adjoint unit

Pramathanath Sastry Residues and Duality
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The question is, when is φ : Lf ∗(−)
L
⊗ f !OY −→ f ! an

isomorphism?

Theorem (Neeman)

Let f and φ be as above. The following are equivalent:

(1) φ : Lf ∗(−)
L
⊗ f !OY −→ f ! is an isomorphism.

(2) f ! commutes with small co-products.

(3) Rf∗ sends perfect complexes to perfect complexes.

Such maps are called quasi-perfect.

Pramathanath Sastry Residues and Duality
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Here are examples of quasi-perfect maps

Flat maps: Maps of the form f : X → Y such that OX ,x is flat
over OY ,f (x) for every x ∈ X .

Regular immersions: Closed immersions of the form f : X ↪→ Y
such that for each x ∈ X , the kernel of the surjection OY ,x �
OX ,x is generated by a regular sequence.

We would like to examine the second example a little closely. For
simplicity assume everything is affine. Then f is given by a
surjective map A � B.
Assume (again for simplicity)

I := ker (A � B) = (t1, . . . , td),

with t a regular sequence.

Pramathanath Sastry Residues and Duality
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Let K•(t) and K •(t) := HomB(K−•(t),A) be the homological and
the cohomological Koszul complexes on t. Since t is regular:

K•(t) −→∼ B

and
K •(t) −→∼ B[−d ].

We thus have

f∗f
!OY = f∗ RH om•X (OX , f

!OY )

−→∼ RH om•Y (f∗OX ,OY )

−→∼ f∗OX [−d ]

The isomorphism depends on the choice of generators t of I .

Pramathanath Sastry Residues and Duality
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The invariant way of saying this is (with I = I∼)

f !OY −→∼ ∧dOX
(I /I 2)−1[−d ].

One sees, more generally, that for a regular immersion f : X ↪→ Y
of codimension d , we have

f ! −→∼ Lf ∗(−)
L
⊗X ∧dOX

NX/Y [−d ]

where NX/Y is the normal bundle of X in Y .

Pramathanath Sastry Residues and Duality
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where NX/Y is the normal bundle of X in Y .
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Upper shriek

Here is how we go beyond proper maps.

f separated and finite type (essentially finite type enough) then
choose a compactification f = p ◦ i (i.e., i an open immersion
and p a proper map) and set

f ! := i∗p!

Compactifications exist (Nagata).

f ! independent of compactification (Deligne - at least for the
cases he considered). This is open base change.
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As things stood until very recently, most of this made sense only
for bounded below complexes if f is not proper (but we do assume
f is separated and of finite type, or more generally separated and
essentially of finite type). The issue has to with flat base change,
which we will review (soon).

Have:
f ! : D+

qc(Y ) −→ D+
qc(X ).

Wish to remove the boundedness hypotheses.
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Flat Base Change

Consider the commutative diagrams (f proper, v flat):

U
u //

g
��

�

X

f
��

V v
// Y

v∗Rf∗f !˜
��

v∗Trf

##G
GG

GG
GG

GG
G

Rg∗u∗f !
∃!µ

// v∗

The map µ : Rg∗u∗f ! → v∗ induces

Φ: u∗f ! → g !v∗.

When is this an isomorphism? More precisely, what are the
conditions on f , g , or E , so that Φ(E ) is an isomorphism?
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“Classically” one needs E ∈ D+
qc(Y ) (Verdier for Y and X of finite

Krull dimension; Lipman in general). In a recent, as yet
unpublished, manuscript Neeman proves:

Let f be as above. Let E ∈ Dqc(Y ). Then Φ(E ) : u∗f !(E ) −→
g !u∗(E ) is an isomorphism if one of the following holds:

(a) E ∈ D+
qc(Y ).

(b) g is of finite tor-dimension

As we pointed out, (a) is classical. However (b) is surprising, and
allows us define f ! : Dqc(Y )→ Dqc(X ) for separated finite type f
as we will see.
Recall: The traditional f ! for such maps is from D+

qc(Y ) to D+
qc(X )

(unless f is proper).
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Suppose f = p ◦ i = q ◦ j are two compactifications of f . Say we
have a commutative diagram with the square cartesian.

X

finite tor-dimension →

j //

�

X

h
��

q

��>
>>

>>
>>

>

X
i
// X p

// Y

(Proof of i∗p! −→∼ j∗q!)

We have i∗(C ) −→∼ j∗h!(C ) for C in the unbounded derived
category Dqc(X ). Setting C = p!E we get

i∗p!(E ) −→∼ j∗h!p!(E ) −→∼ j∗q!(E ) (E ∈ Dqc(Y )).

Given (i , p) and (j , q) we can always reduce to the case considered.
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Introduction
The RD-approach

The abstract approach
Quasi-perfect scheme maps

Examples
Base Change, Verdier, Fundamental Class

Suppose f = p ◦ i = q ◦ j are two compactifications of f . Say we
have a commutative diagram with the square cartesian.

X

finite tor-dimension →

j //

�

X

h
��

q

��>
>>

>>
>>

>

X
i
// X p

// Y

(Proof of i∗p! −→∼ j∗q!)

We have i∗(C ) −→∼ j∗h!(C ) for C in the unbounded derived
category Dqc(X ).

Setting C = p!E we get

i∗p!(E ) −→∼ j∗h!p!(E ) −→∼ j∗q!(E ) (E ∈ Dqc(Y )).

Given (i , p) and (j , q) we can always reduce to the case considered.

Pramathanath Sastry Residues and Duality



Introduction
The RD-approach

The abstract approach
Quasi-perfect scheme maps

Examples
Base Change, Verdier, Fundamental Class

Suppose f = p ◦ i = q ◦ j are two compactifications of f . Say we
have a commutative diagram with the square cartesian.

X

finite tor-dimension →

j //

�

X

h
��

q

��>
>>

>>
>>

>

X
i
// X p

// Y

(Proof of i∗p! −→∼ j∗q!)

We have i∗(C ) −→∼ j∗h!(C ) for C in the unbounded derived
category Dqc(X ). Setting C = p!E we get

i∗p!(E ) −→∼ j∗h!p!(E ) −→∼ j∗q!(E ) (E ∈ Dqc(Y )).

Given (i , p) and (j , q) we can always reduce to the case considered.

Pramathanath Sastry Residues and Duality



Introduction
The RD-approach

The abstract approach
Quasi-perfect scheme maps

Examples
Base Change, Verdier, Fundamental Class

Suppose f = p ◦ i = q ◦ j are two compactifications of f . Say we
have a commutative diagram with the square cartesian.

X

finite tor-dimension →

j //

�

X

h
��

q

��>
>>

>>
>>

>

X
i
// X p

// Y

(Proof of i∗p! −→∼ j∗q!)

We have i∗(C ) −→∼ j∗h!(C ) for C in the unbounded derived
category Dqc(X ). Setting C = p!E we get

i∗p!(E ) −→∼ j∗h!p!(E ) −→∼ j∗q!(E ) (E ∈ Dqc(Y )).

Given (i , p) and (j , q) we can always reduce to the case considered.

Pramathanath Sastry Residues and Duality



Introduction
The RD-approach

The abstract approach
Quasi-perfect scheme maps

Examples
Base Change, Verdier, Fundamental Class

The isomorphisms i∗p! −→∼ j∗q! of the previous slide allow us to
define (with tedious checking of compatbilities) f !. In fact one has
(via the results of Nayak) :

Theorem (Neeman)

Let Se be the category whose objects are noetherian schemes, and
the morphisms are the separated maps essentially of finite type.

Given f : X → Y in Se there is a well defined functor
f ! : Dqc(Y )→ Dqc(X ) in the unbounded derived category.

The resulting “variance theory” (−)! on Se is a pseudofunctor.

From now on we assume f is separated and of finite type, and f ! is
as above.

Pramathanath Sastry Residues and Duality
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Verdier’s isomorphism

Suppose f : X → Y is smooth of relative dimension d . Then f is

flat, and hence f ! −→∼ Lf ∗(−)
L
⊗X f !OY .

Consider the
commutative diagram

X
δ // X ′′

♣

p2 //

p1

��

X

f
��

X
f
// Y

(♣ cartesian)

Since f is smooth, δ is a regular immersion of codimension d .
Note that Iδ/I

2
δ = Ω1

X/Y , whence δ!OX ′′ −→∼ (Ωd
X/Y )−1[−d ]

Pramathanath Sastry Residues and Duality
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We thus have

OX −→∼ δ!p!
1OX −→∼ δ!p!

1f
∗OY

−→∼ δ!p∗2f
!OY

−→∼ Lδ∗p∗2f
!OY ⊗X (Ωd

X/Y )−1[−d ]

−→∼ f !OY ⊗X (Ωd
X/Y )−1[−d ]

One therefore has the Verdier isomorphism

vf : f !OY −→∼ Ωd
X/Y [d ].

Serre duality is a special case of this.

Pramathanath Sastry Residues and Duality
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Let X be a smooth proper k variety of dimension d , and set
Y = Spec k and f : X → Y the structure map. The isomorphism
HomD(X )(F , f !OY ) −→∼ HomD(Y )(Rf∗F ,OY ) translates to

RHom•X (F , Ωd
X/k [d ]) −→∼ RHom•k(RΓ(X , F ), k).

Now suppose F is a coherent sheaf. Apply Hi−d to both sides. Get

ExtiX (F , Ωd
X/k) −→∼ Homk(Hd−i (X , F ), k).

Pramathanath Sastry Residues and Duality
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Let Z be a scheme. If C • is a complex of OZ -modules
concentrated in the interval [−d , 0], we have an obvious map of
complexes C • → H0(C •). If D is an OZ -module, then a map of
complexes C • → D is the same as a map H0(C •)→ D.

. . . // 0 // C−d //

��

. . . // C−1 //

��

C 0

��

// 0 // . . .

. . . // 0 // 0 // . . . // 0 // D // 0 // . . .

This means that if the smooth map f is proper, giving

Trf (OY ) : Rf∗Ω
d
X/Y [d ]→ OY

is equivalent to giving

Rd f∗Ω
d
X/Y → OY .

Pramathanath Sastry Residues and Duality
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Difficulty with Verdier as a starting point

Suppose f : X → Y is smooth and proper of relative dimension d .
Let

∫
f – the Verdier trace/integral – be defined by the

commutativity of

Rd f∗Ω
d
f

∫
f

11

˜
H0(vf )

// H0(Rf∗f !OY )

H0(Trf )

��
OY

We do not know
∫
f , not even when X = Pd

Y and f : X → Y the
structural map π = πY : Pd

Y → Y and Y = Spec k . Or, . . . did not
know until now.

Pramathanath Sastry Residues and Duality
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Residues and Traces via Verdier

In recent (as yet unpublished) work, Suresh Nayak and I show

When f = πY ,
∫
f is the usual map Rdπ∗Ω

d
π → OY .

In other cases,
∫
f is determined through residues.

Hd
Z (X , Ωd

f )

resZ 22

// // Hd(X , Ωd
f )∫

f
��
A

In the picture above Y = SpecA. The residue along Z ,
resZ = resZ ,f , is the composite indicated. Z → Y is finite
dominant.
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Hd
Z (X , Ωd

f )

resZ 22

// // Hd(X , Ωd
f )∫

f
��
A

“Residues determine

∫
”

If Z is contained in an affine open subscheme U = SpecR of
Y , and is given up to radical by the vanishing of t1, . . . , td ,
then elements of Hd

Z (X , Ωd
f ) can be represented by generalised

fractions of the form
[

µ

t
α1
1 ,...,t

αd
d

]
, with µ ∈ Ωd

R/A.

We show that the expressions

resX/Y

[
µ

tα1
1 , . . . , tαd

d

]
:= resZ

[
µ

tα1
1 , . . . , tαd

d

]
satisfy all the residue formulae given in Hartshorne’s [RD].
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Suppose φ : X → S and ψ : Y → S are both smooth of relative
dimension d , and h : X → Y is a finite flat map of Y -schemes. We
then have a map (from abstract nonsense and Verdier’s
isomorphism) Trh : h∗Ω

d
X/S → Ωd

Y /S? Can one identify this. A
possible candidate is a trace defined concretely by Lipman and
Kunz and used by Kunz to build a partial theory of duality.
Intuitively, here is the idea.
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Trh : h∗Ωd
X/S → Ωd

Y/S
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Reminiscences of Grothendieck and his school. Luc Illusie with
Alexander Beilinson, Spencer Bloch, Vladimir Drinfeld, et.al.
Notices of the AMS, vol 57, no.9, Oct 2010.
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