Residues and Duality-II

Pramathanath Sastry

Chennai Mathematical Institute

October 7, 2019 CMI Algebraic Geometry Seminar

$$f^! \mathscr{O}_Y \xrightarrow{\sim} \Omega^d_{X/Y}[d]$$

Verdier's isomorphism

All schemes and rings in this talk are assumed noetherian for simplicity.

Recall Verdier showed, using the so called *fundamental local* isomorphism for regular immersions and the flat base change theorem for $(-)^!$, that we have an isomorphism (the Verdier isomorphism)

$$v_f \colon f^! \mathscr{O}_Y \xrightarrow{\sim} \Omega^d_{X/Y}[d]$$

when $f: X \to Y$ is smooth of relative dimension d. This contains within it Serre Duality for coherent sheaves on smooth proper varieties.

$$f^! \mathscr{O}_Y \xrightarrow{\sim} \Omega^d_{X/Y}[d]$$

The Verdier trace a.k.a. integral

Suppose $f: X \to Y$ is smooth and proper of relative dimension d. Let $\int_f - the Verdier trace/integral - be defined by the commutativity of$

$$f^! \mathscr{O}_Y \xrightarrow{\sim} \Omega^d_{X/Y}[d]$$

The Verdier trace a.k.a. integral

Suppose $f: X \to Y$ is smooth and proper of relative dimension d. Let $\int_f - the Verdier trace/integral - be defined by the commutativity of$

Goal: To describe \int_f explicitly.

Residues

Goal: To describe \int_f explicitly.

Residues

Goal: To describe \int_f explicitly. What does that mean?

Residues

Goal: To describe \int_f explicitly. What does that mean? Need cohomology with supports, i.e. local cohomology.

Residues

Goal: To describe \int_f explicitly. What does that mean? Need cohomology with supports, i.e. local cohomology.

Goal: To describe \int_f explicitly. What does that mean? Need cohomology with supports, i.e. local cohomology.

In the picture above $Y = \operatorname{Spec} A$. The *residue along Z*, res_Z = res_{Z,f}, is the composite indicated. $Z \to Y$ is finite dominant.

 \longrightarrow H^d(X, Ω_f^d) "Residues determine \int "

Pramathanath Sastry Residues and Duality-II

If Z is contained in an affine open subscheme $U = \operatorname{Spec} R$ of Y, and is given up to radical by the vanishing of t_1, \ldots, t_d , then elements of $\operatorname{H}_Z^d(X, \Omega_f^d)$ can be represented by generalised fractions of the form $\begin{bmatrix} \mu \\ t_1^{\alpha_1}, \dots, t_d^{\alpha_d} \end{bmatrix}$, with $\mu \in \Omega_{R/A}^d$.

If Z is contained in an affine open subscheme $U = \operatorname{Spec} R$ of Y, and is given up to radical by the vanishing of t_1, \ldots, t_d , then elements of $\operatorname{H}^d_Z(X, \Omega^d_f)$ can be represented by generalised fractions of the form $\begin{bmatrix} \mu \\ t_1^{\alpha_1}, \dots, t_d^{\alpha_d} \end{bmatrix}$, with $\mu \in \Omega^d_{R/A}$.

So really one needs to understand residues. And for that one has to first understand **generalised fractions**.

Let R be a noetherian ring and I an ideal. Have (via excision) a long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{i}_{Z}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(U,\mathscr{F})$$
$$\longrightarrow \mathrm{H}^{i+1}_{Z}(X,\mathscr{F}) \longrightarrow \cdots$$

for \mathscr{F} a sheaf of abelian groups.

Let R be a noetherian ring and I an ideal. Have (via excision) a long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{i}_{Z}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(U,\mathscr{F})$$
$$\longrightarrow \mathrm{H}^{i+1}_{Z}(X,\mathscr{F}) \longrightarrow \cdots$$

for ${\mathscr F}$ a sheaf of abelian groups. If ${\mathscr F}$ is quasi-coherent,

$$\mathrm{H}^{i}(U,\mathscr{F}) \xrightarrow{\sim} \mathrm{H}^{i+1}_{Z}(X,\mathscr{F}) \qquad (i \geq 1),$$

Let R be a noetherian ring and I an ideal. Have (via excision) a long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{i}_{Z}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(X,\mathscr{F}) \longrightarrow \mathrm{H}^{i}(U,\mathscr{F})$$
$$\longrightarrow \mathrm{H}^{i+1}_{Z}(X,\mathscr{F}) \longrightarrow \cdots$$

for \mathscr{F} a sheaf of abelian groups. If \mathscr{F} is quasi-coherent, $\operatorname{H}^{i}(U,\mathscr{F}) \xrightarrow{\sim} \operatorname{H}^{i+1}_{Z}(X,\mathscr{F}) \qquad (i \geq 1),$

and

$$\mathrm{H}^0(U,\,\mathcal{F}) \xrightarrow{\pi} \mathrm{H}^1_Z(X,\,\mathcal{F}).$$

$$\mathrm{H}^{d-1}(U,\mathcal{F}) \xrightarrow{\pi} \mathrm{H}^d_Z(X,\mathcal{F})$$

for $d \ge 1$ which is an isomorphism when $d \ge 2$.

$$\mathrm{H}^{d-1}(U,\mathscr{F}) \xrightarrow{\pi} \mathrm{H}^{d}_{Z}(X,\mathscr{F})$$

for $d \ge 1$ which is an isomorphism when $d \ge 2$.

Let *R* be a ring and *I* an ideal generated, up to radical, by $t_1, \ldots, t_d \in R$, and *Z* the closed subscheme defined by *I*, i.e. $Z = \operatorname{Spec} A/I$.

$$\mathrm{H}^{d-1}(U,\mathscr{F}) \xrightarrow{\pi} \mathrm{H}^{d}_{Z}(X,\mathscr{F})$$

for $d \ge 1$ which is an isomorphism when $d \ge 2$.

Let *R* be a ring and *I* an ideal generated, up to radical, by $t_1, \ldots, t_d \in R$, and *Z* the closed subscheme defined by *I*, i.e. $Z = \operatorname{Spec} A/I$.

Let $X = \operatorname{Spec} R$, $U_i = \{t_i \neq 0\}$, and $\mathscr{U} = \{U_i\}$.

$$\mathrm{H}^{d-1}(U,\mathscr{F}) \xrightarrow{\pi} \mathrm{H}^{d}_{Z}(X,\mathscr{F})$$

for $d \ge 1$ which is an isomorphism when $d \ge 2$.

Let *R* be a ring and *I* an ideal generated, up to radical, by $t_1, \ldots, t_d \in R$, and *Z* the closed subscheme defined by *I*, i.e. $Z = \operatorname{Spec} A/I$.

Let $X = \operatorname{Spec} R$, $U_i = \{t_i \neq 0\}$, and $\mathscr{U} = \{U_i\}$.

 \mathscr{U} is an affine open cover of $U = X \setminus Z$.

Since \mathscr{U} is an affine open cover of the separated scheme $U = X \setminus Z$, and $\mathscr{F} \in X_{qc}$, we have a natural isomorphism

$$\check{\mathrm{H}}^{d-1}(\mathscr{U},\mathscr{F}) \stackrel{\sim}{\longrightarrow} \mathrm{H}^{d-1}(U,\mathscr{F}).$$

Since \mathscr{U} is an affine open cover of the separated scheme $U = X \setminus Z$, and $\mathscr{F} \in X_{qc}$, we have a natural isomorphism

$$\check{\mathrm{H}}^{d-1}(\mathscr{U},\mathscr{F}) \stackrel{\sim}{\longrightarrow} \mathrm{H}^{d-1}(U,\mathscr{F}).$$

Now $\check{C}^{d-1}(\mathscr{U},\mathscr{F}) = M_{t_1...t_d}$ where $M = \Gamma(X, \mathscr{F})$ is the *R*-module corresponding to \mathscr{F} .

Since \mathscr{U} is an affine open cover of the separated scheme $U = X \setminus Z$, and $\mathscr{F} \in X_{qc}$, we have a natural isomorphism

$$\check{\mathrm{H}}^{d-1}(\mathscr{U},\mathscr{F}) \stackrel{\sim}{\longrightarrow} \mathrm{H}^{d-1}(U,\mathscr{F}).$$

Now $\check{C}^{d-1}(\mathscr{U},\mathscr{F}) = M_{t_1...t_d}$ where $M = \Gamma(X, \mathscr{F})$ is the *R*-module corresponding to \mathscr{F} . We have a surjection

$$\begin{split} M_{t_1\dots t_d} &= \check{C}^{d-1}(\mathscr{U},\mathscr{F}) \xrightarrow{\pi} \check{\mathrm{H}}^{d-1}(\mathscr{U},\mathscr{F}) \\ & \xrightarrow{\sim} \mathrm{H}^{d-1}(U,\mathscr{F}) \xrightarrow{\pi} \mathrm{H}^d_Z(X,\mathscr{F}). \end{split}$$

Generalised fractions

Definition of a generalised fraction

Have $M_{t_1...t_d} \twoheadrightarrow \operatorname{H}^d_Z(X, \mathscr{F}) = \operatorname{H}^d_I(M).$

Definition of a generalised fraction

Have
$$M_{t_1...t_d} \twoheadrightarrow \operatorname{H}^d_Z(X, \mathscr{F}) = \operatorname{H}^d_I(M)$$
. The image of $\frac{m}{t_1^{e_1}...t_d^{e_d}}$ in $\operatorname{H}^d_I(M)$ under the above surjection is denoted by the generalised fraction

$$\begin{bmatrix} m \\ t_1^{\mathbf{e}_1}, \ldots, t_d^{\mathbf{e}_d} \end{bmatrix} \in \mathrm{H}^d_I(M).$$

Definition of a generalised fraction

Have
$$M_{t_1...t_d} \twoheadrightarrow \operatorname{H}^d_Z(X, \mathscr{F}) = \operatorname{H}^d_I(M)$$
. The image of $\frac{m}{t_1^{e_1}...t_d^{e_d}}$ in $\operatorname{H}^d_I(M)$ under the above surjection is denoted by the generalised fraction

$$\begin{bmatrix} m \\ t_1^{e_1}, \ldots, t_d^{e_d} \end{bmatrix} \in \mathrm{H}^d_I(M).$$

There is a calculus of generalised fractions. For example, it turns out that if $\mathbf{s} = \{s_1, \ldots, s_d\}$ is related to \mathbf{t} by the equation $s_i = \sum_j a_{ij} t_j$, then

$$\begin{bmatrix} m \\ t_1, \ldots, t_d \end{bmatrix} = \begin{bmatrix} \det{(a_{ij})m} \\ s_1, \ldots, s_d \end{bmatrix}.$$

Definition of a generalised fraction

Have
$$M_{t_1...t_d} \twoheadrightarrow \operatorname{H}^d_Z(X, \mathscr{F}) = \operatorname{H}^d_I(M)$$
. The image of $\frac{m}{t_1^{e_1}...t_d^{e_d}}$ in $\operatorname{H}^d_I(M)$ under the above surjection is denoted by the generalised fraction

$$\begin{bmatrix} m \\ t_1^{e_1}, \ldots, t_d^{e_d} \end{bmatrix} \in \mathrm{H}^d_I(M).$$

There is a calculus of generalised fractions. For example, it turns out that if $\mathbf{s} = \{s_1, \ldots, s_d\}$ is related to \mathbf{t} by the equation $s_i = \sum_j a_{ij} t_j$, then

$$\begin{bmatrix} m \\ t_1, \ldots, t_d \end{bmatrix} = \begin{bmatrix} \det(a_{ij})m \\ s_1, \ldots, s_d \end{bmatrix}.$$

This is best understood via stable Koszul complexes.

Generalised fractions

Stable Koszul complexes

The complex

$$K^{\bullet}_{\infty}(\mathbf{t}, M) := \varinjlim_{n} K^{\bullet}(\mathbf{t}^{n}, M)$$

is called the stable Koszul complex on M with respect to \mathbf{t} . It is well-known that $K^{\bullet}_{\infty}(\mathbf{t}, M)$ looks like this \downarrow

 $0 \longrightarrow M \longrightarrow \check{C}^{0}(\mathscr{U},\mathscr{F}) \longrightarrow \check{C}^{1}(\mathscr{U},\mathscr{F}) \longrightarrow \dots \longrightarrow \check{C}^{d-1}(\mathscr{U},\mathscr{F}) \longrightarrow 0$

Formulae like $\begin{bmatrix} m \\ t_1,...,t_d \end{bmatrix} = \begin{bmatrix} \det(a_{ij})m \\ s_1,...,s_d \end{bmatrix}$ are best proven using stable Koszuls, since one can compare $K^{\bullet}(\mathbf{t}, M)$ with $K^{\bullet}(\mathbf{s}, M)$ and then take direct limits.

This is seen as follows. We have a map of Koszul complexes $\varphi^{\bullet} \colon K^{\bullet}(\mathbf{t}, M) \to K^{\bullet}(\mathbf{s}, M))$ lifting the identity on M, and which is multiplication by det (a_{ij}) in degree d. Let $\mathscr{K}^{i} = K^{i+1}(\mathbf{t}, M)^{\sim}$ and $\mathscr{K}^{\prime i} = K^{i+1}(\mathbf{s}, M)^{\sim}$. We then have maps of complexes $\mathscr{F}[0] \to \mathscr{K}^{\bullet}$ and $\mathscr{F}[0] \to \mathscr{K}^{\prime \bullet}$, such that

$$\mathscr{K}^{ullet} \xrightarrow{\text{via } \varphi^{ullet}} \mathscr{K}'^{ullet}$$

lifts the identity map on $\mathscr{F}[0]$.

This is seen as follows. We have a map of Koszul complexes $\varphi^{\bullet} \colon K^{\bullet}(\mathbf{t}, M) \to K^{\bullet}(\mathbf{s}, M))$ lifting the identity on M, and which is multiplication by det (a_{ij}) in degree d. Let $\mathscr{K}^{i} = K^{i+1}(\mathbf{t}, M)^{\sim}$ and $\mathscr{K}^{\prime i} = K^{i+1}(\mathbf{s}, M)^{\sim}$. We then have maps of complexes $\mathscr{F}[0] \to \mathscr{K}^{\bullet}$ and $\mathscr{F}[0] \to \mathscr{K}^{\prime \bullet}$, such that

$$\mathscr{K}^{ullet} \xrightarrow{\text{via } \varphi^{ullet}} \mathscr{K}'^{ullet}$$

lifts the identity map on $\mathscr{F}[0]$.

Let $U'_i = \{s_i \neq 0\}$ and $\mathscr{U}' = \{U'_i\}$. Let \mathscr{C}^{\bullet} and \mathscr{C}'^{\bullet} be the sheaf Čech complexes of $\mathscr{F}|_U$ with respect to \mathscr{U} and \mathscr{U}' respectively. Both are resolutions of $\mathscr{F}|_U$ and if \mathscr{I}^{\bullet} is a quasi-coherent injective resolution of \mathscr{F} , the data fits into a homotopy commutative diagram as follows.

Local cohomology

Since the map $K^{d}(\mathbf{t}, M) \to K^{d}_{\infty}(\mathbf{t}, M)$ is $m \mapsto \frac{m}{t_{1}...t_{d}}$, we conclude that the image of $\frac{m}{t_{1}...t_{d}} \in C^{d-1}(\mathscr{U}, \mathscr{F})$ and that of $\frac{\det(a_{ij})m}{s_{1}...s_{d}} \in C^{d-1}(\mathscr{U}', \mathscr{F})$ in $\mathrm{H}^{d-1}(U, \mathscr{F})$ are the same. The assertion follows.

Since the map $K^d(\mathbf{t}, M) \to K^d_{\infty}(\mathbf{t}, M)$ is $m \mapsto \frac{m}{t_1 \dots t_d}$, we conclude that the image of $\frac{m}{t_1...t_d} \in C^{d-1}(\mathscr{U}, \mathscr{F})$ and that of $rac{\det(a_{ij})m}{\Im}\in C^{d-1}(\mathscr{U}',\mathscr{F})$ in $\mathrm{H}^{d-1}(U,\mathscr{F})$ are the same. The assertion follows. See Dualizing sheaves, differentials forms and residues on algebraic varieties by Joseph Lipman, Asterisque 117, Société Mathematique de France (1984) for further details.

Residues again

Once again suppose $f: X \to Y = \text{Spec } A$ is smooth, separated, of relative dimension d. Suppose Z is a closed subscheme of X such that $Z \to Y$ is finite and flat.

One can define $\operatorname{res}_Z \colon \operatorname{H}^d_Z(X, \Omega^d_{X/Y}) \to A$ without assuming f is proper in the following way.

Once again suppose $f: X \to Y = \text{Spec } A$ is smooth, separated, of relative dimension d. Suppose Z is a closed subscheme of X such that $Z \to Y$ is finite and flat.

One can define $\operatorname{res}_Z \colon \operatorname{H}^d_Z(X, \Omega^d_{X/Y}) \to A$ without assuming f is proper in the following way.

Pick a compactification $(j, \overline{X}, \overline{f})$ of f, i.e. $j: X \to \overline{X}$ is an open immersion and $\overline{f}: \overline{X} \to Y$ is proper and $\overline{f} \circ j = f$. We have a map $\operatorname{Tr}_{f,Z}: \mathbf{R}\Gamma_Z(X, \Omega^d_{X/Y}[d]) \to A$ defined by the commutativity of

One shows $\operatorname{Tr}_{f,Z}$ is independent of the compactification \overline{f} . Define $\operatorname{res}_Z \colon \operatorname{H}^d_Z(X, \Omega^d_{X/Y}) \to A$ by

$$\operatorname{res}_{Z} := \operatorname{H}^{0}(\operatorname{Tr}_{f.Z}).$$

Assume for simplicity that Z factors through an affine open set $U = \operatorname{Spec} R$ of X and the defining ideal of Z in R is $I = (t_1, \ldots, t_d)$.

There are a number of residue formulas one needs to establish for this residue theory via Verdier's isomorphism to bring it in line with the formulas (R1)–(R10) of Grothendieck given in Hartshorne's *Residues and Duality* and proved in Conrad's *Grothendieck Duality* and Base Change, Springer LNM 1750 (2000). For example, if the finite flat map $Z \rightarrow Y$ is an isomorphism then one has to show

$$\operatorname{res}_{Z} \begin{bmatrix} \mathrm{d}t_{1} \wedge \cdots \wedge \mathrm{d}t_{d} \\ t_{1}^{e_{1}}, \dots, t_{d}^{e_{d}} \end{bmatrix} = \begin{cases} 1 & \text{if } (e_{1}, \dots, e_{d}) = (1, \dots, 1) \\ 0 & \text{otherwise} \end{cases}$$

Generalised fractions

Thom Class

In the above situation (i.e. $Z \xrightarrow{\sim} Y$) it should be pointed out that if $s_1, \ldots, s_d \in R$ is another set of elements defining Z, then our determinant formula gives (using the fact that fractions of the form $\begin{bmatrix} t_1, \ldots, t_d \end{bmatrix}$ are annihilated by elements from the ideal (t_1, \ldots, t_d)):

$$\begin{bmatrix} \mathrm{d}t_1 \wedge \cdots \wedge \mathrm{d}t_d \\ t_1, \dots, t_d \end{bmatrix} = \begin{bmatrix} \mathrm{d}s_1 \wedge \cdots \wedge \mathrm{d}s_d \\ s_1, \dots, s_d \end{bmatrix}$$

One should regard $\begin{bmatrix} dt_1 \wedge \cdots \wedge dt_d \\ t_1, \dots, t_d \end{bmatrix} \in H^d_Z(X, \Omega^d_{X/Y})$ as the Thom class of the normal bundle of Z in X and its image in $H^d(X, \Omega^d_{X/Y})$, at least when $X \to Y$ is proper, as a (relative) fundamental class of Z in X over Y. Which is why (morally) it "integrates" to 1.