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Grothendieck Duality

At its heart Grothendieck Duality is about creating a
pseudo-functor (−)! on a suitable category of algebraic geometric
objects (e.g., noetherian schemes, algebraic spaces, stacks . . . )
such that

For proper maps f , f ! is a right adjoint to Rf∗

For “general” maps, f ! is supposed to be the right adjoint to
Rf! –the direct image with proper supports.

f ! it behaves well with respect to étale localizations of the
source and with respect to flat base change.
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Two approaches

The concrete approach (Grothendieck-Hartshorne). This is the
approach in Hartshorne’s Residues and Duality [RD]. Dualizing
complexes and residual complexes play a major part. For a
smooth map f , the functor f ! is defined to be f ∗(−)⊗ Ωd

f [d ],
d= relative dimension of f . Similarly definitions are given for
finite maps, projective space, . . . . The game is to make it all
hang together to form a pseudo-functor.

The abstract approach (Deligne-Verdier). This is the approach
first started by Deligne in the appendix to [RD], but taken to
a different level by Lipman, Neeman, and their collaborators.
“Upper shriek” is defined by what is does, not by fiat.
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Papers that will be talked about

I will concentrate on the following papers of Neeman:

Grothendieck’s Duality Theorem via Bousfield’s techniques and
Brown representability, JAMS (1996).

(With Lipman) Quasi-perfect scheme-maps and boundedness
of the twisted inverse image, Illinois J. Math. (2007).

An improvement on the base-change theorem and the functor
f !, arXiv:1406.7599.

(With Lipman) Fundamental Class and Verdier, to appear in
Algebraic Geometry Foundation Compositio Mathematica.

We begin with the first paper.
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Compact objects

We begin with a basic definition.

Definition

Let T be a triangulated category closed under small co-products.

(i) An object c of T is compact if

HomT (c ,
∐
λ

xλ) =
∐
λ

HomT (c , xλ)

for small co-products
∐
λ xλ in T .

(ii) T c = full subcategory of T consisting of compact objects.
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Compactly generated categories

Definition

A triangulated category S is compactly generated if small co-
products exist in S and there exists a subset S of compact objects
in S satisfying one the following two equivalent conditions:

(a) Hom(s, y) = 0 for all s ∈ S =⇒ y = 0.

(b) Any localizing subcategory of S containing S must be S . [A
localizing subcategory R of S is a full subcategory containing
zero which is closed under coproducts and triangles.]

The equivalence of the two conditions (a) and (b) is not
straightforward.
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Here is how one produces right adjoints.

Theorem (Brown Representability)

Let F : S → T be a triangulated functor such that

(a) S is compactly generated.

(b) F respects coproducts. (T need not have co-products.)

Then there exists a right adjoint for F .

A related and very useful result is the following.

Theorem

Suppose F : S → T satisfies the requirements of Brown repre-
sentability and G : T → S is a right adjoint of F . Assume T
has small coproducrs. Then G respects coproducts if and only if for
every compact object s in S , F (s) is compact in T .
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For a map of schemes f : X → Y we want a right adjoint to
Rf∗ : Dqc(X )→ Dqc(Y ).

Theorem

Suppose X and Y are quasi-compact and quasi- separated schemes.
Then

(a) Dqc(X )c = perfect complexes.

(b) Dqc(X ) is compactly generated (in fact by a single perfect com-
plex).

(c) If f : X → Y is a morphism of schemes, then Rf∗ commutes
with arbitrary direct sums.

Note: Neeman (1996) assumed (in addition to quasi-compactness)
that X , Y and f are separated to prove this. He also proved the
statement outside the parenthesis in (b). Bondal and van den Berg
proved the stronger statements.
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Some references

Bondal and van den Berg: Generators and representability of
functors in commutative and non-commutative geometry, Moscow
Math. J. (2003)).

One can also find a proof that Rf∗ respects coproducts in [Lip-
man, LNM 1960].

Pramathanath Sastry Grothendieck Duality - the abstract approach



Introduction
Bousfield techinques

Quasi-perfect scheme maps
Base Change, Verdier, Fundamental Class

Duality

Theorem (Duality)

Let f : X → Y be a map of quasi-compact quasi-separated schemes.
Then Rf∗ : Dqc(X )→ Dqc(Y ) has a right adjoint

f × : Dqc(Y )→ Dqc(X ).

In other words, we have a co-adjoint unit (the “trace map”)
Trf : Rf∗f

× → 1Dqc(Y ) inducing a bifunctorial isomorphism

HomDqc(X )(F , f ×G ) −→∼ HomDqc(Y )(Rf∗F , G ).
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There is a sheaf version.

Theorem

Let f : X → Y be a pseudo-coherent proper map of quasi-compact
separated schemes. Then Rf∗ : D+

qc(X ) → D+
qc(Y ) has a right ad-

joint f !. Furthermore

Rf∗RH omX (x , f !y) −→∼ RH omY (Rf∗(x), y).

This fails for unbounded complexes! In other words flat base
change for (−)! fails for unbounded complexes. Neeman returns to
this issue in a recent manuscript.
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Lf ∗(−)
L
⊗ f ×OY versus f ×

Let

φ : Lf ∗(−)
L
⊗ f ×OY −→ f ×

be defined by the commutativity of

Rf∗(Lf ∗(F )
L
⊗ f ×OY )

Rf∗(φ(F ))

��

F
L
⊗ Rf∗f

×OY˜
proj. formula
oo

1⊗Trf
��

Rf∗f
×(F )

Trf
// F

(F∈Dqc(Y ))

(
Rf∗f

× Trf−−−→ 1Dqc(Y )

)
= the co-adjoint unit
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The question is, when is φ : Lf ∗(−)
L
⊗ f ×OY −→ f × an

isomorphism?

Theorem (Neeman)

Let f and φ be as above. The following are equivalent:

(1) φ : Lf ∗(−)
L
⊗ f ×OY −→ f × is an isomorphism.

(2) f × commutes with small co-products.

(3) Rf∗ sends perfect complexes to perfect complexes.

(2) ⇐⇒ (3) is from general principles.
(1) =⇒ (2) Obvious.
(3) =⇒ (1) Check φ(E ) is an isomorphism for E perfect.
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Quasi-perfect maps

Definition

A map f : X → Y between quasi-compact quasi-separated schemes
is said to be quasi-perfect if it satisfies any of the equivalent condi-
tions of the above Theorem.

f quasi-perfect is equivalent to any one of

• φ : Lf ∗(−)
L
⊗ f ×OY −→∼ f ×

• f × commutes with small co-products
• Rf∗ sends perfect complexes to perfect complexes

Lipman and Neeman explore quasi-perfection in Quasi-perfect
scheme-maps and boundedness of the twisted inverse image,
Illinois J. Math. (2007).
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Assumption

From now on, all schemes are quasi-compact and quasi-separated
(so all maps are concentrated).

We need some definitions.
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Pseudo-coherence

1) Complex n-pseudo-coherent if locally:

• free of finite rank //

. . . // En−1 // En // En+1 // . . . // En+k

Pseudo-coherent = n-pseudo-coherent ∀n.

2) Map pseudo-coherent if locally (U open in X )

X

f   @
@@

@@
@@

@ U? _ �
�

closed immersion
↓
i // Z

p←smooth��~~
~~
~~
~

Y

with i∗OU pseudo-coherent
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Definitions

A map of schemes f : X → Y is perfect if it is pseudo-coherent
and of finite tor-dimension.

A map f is quasi-proper if Rf∗ sends pseudo-coherent complexes
to pseudo-coherent complexes.

Theorem (Kiehl, 1972)

A proper pseudo-coherent map is quasi-proper.
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Theorem (Lipman-Neeman, 2006)

For a map f : X → Y the following are equivalent:

(a) f is quasi-perfect (resp. perfect)

(b) f is quasi-proper (resp. pseudo-coherent) and of finite tor-
dimension.

(c) f is quasi-proper (resp. pseudo-coherent) and f × is bounded.
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Observe that the definition of perfect gives us (b) ⇐⇒ (a) for the
‘resp. case’.

Interesting features of (a) =⇒ (c)

Any pseudo-coherent complex can be arbitrarily well approxi-
mated globally by a perfect complex. This was previously known
only for divisorial schemes.

Recall that Bondal and van den Bergh proved that Dqc(X ) is
generated by a single element. This statement is refined.

If S is a perfect generator of Dqc(X ), ∃ A = A(S) such that if
E ∈ Dqc(X ) with H j(E ) 6= 0, there exists a non-trivial map
S → E [n] for some n ≥ j − A.
As for (c) =⇒ (b), the crucial fact proven is: if f × is bounded
then f is of finite tor-dimension.
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Suppose f is a proper map of noetherian schemes. The following
are equivalent

f is quasi-perfect.

f is perfect.

f × is bounded.
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Upper shriek

We now consider only noetherian schemes.

f ! := f × when f is proper.

f separated and finite type (essentially finite type enough) then
choose a compactification f = p ◦ i (i.e., i an open immersion
and p a proper map) and set

f ! := i∗p×

Compactifications exist (Nagata).

f ! independent of compactification (Deligne - at least for the
cases he considered).
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As things stood until very recently, most of this made sense only
for bounded below complexes if f is not proper (but we do assume
f is separated and of finite type, or more generally separated and
essentially of finite type). The issue has to with flat base change,
which we will review (soon).

Have:
f ! : D+

qc(Y ) −→ D+
qc(X ).

Wish to remove the boundedness hypotheses.
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Flat Base Change

Consider the commutative diagrams (f proper, v flat):

U
u //

g
��

�

X

f
��

V v
// Y

v∗Rf∗f
!˜

��

v∗Trf

##G
GG

GG
GG

GG
G

Rg∗u
∗f !
∃!µ

// v∗

The map µ : Rg∗u
∗f ! → v∗ induces

Φ: u∗f ! → g !v∗.

When is this an isomorphism? More precisely, what are the
conditions on f , g , or E , so that Φ(E ) is an isomorphism?
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“Classically” one needs E ∈ D+
qc(Y ) (Verdier for Y and X of finite

Krull dimension; Lipman in general). In a recent, as yet
unpublished, manuscript Neeman proves:

Let f be as above. Let E ∈ Dqc(Y ). Then Φ(E ) : u∗f ×(E ) −→
g×u∗(E ) is an isomorphism if one of the following holds:

(a) E ∈ D+
qc(Y ).

(b) g is of finite tor-dimension

As we pointed out, (a) is classical. However (b) is surprising, and
allows us define f ! : Dqc(Y )→ Dqc(X ) for separated finite type f
as we will see.
Recall: The traditional f ! for such maps is from D+

qc(Y ) to D+
qc(X )

(unless f is proper).
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Suppose f = p ◦ i = q ◦ j are two compactifications of f . Say we
have a commutative diagram with the square cartesian.

X

finite tor-dimension →

j //

�

X

h
��

q

��>
>>

>>
>>

>

X
i
// X p

// Y

(Proof of i∗p! −→∼ j∗q!)

We have i∗(C ) −→∼ j∗h!(C ) for C in the unbounded derived
category Dqc(X ). Setting C = p!E we get

i∗p!(E ) −→∼ j∗h!p!(E ) −→∼ j∗q!(E ) (E ∈ Dqc(Y )).

Given (i , p) and (j , q) we can always reduce to the case considered.
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The isomorphisms i∗p! −→∼ j∗q! of the previous slide allow us to
define (with tedious checking of compatbilities) f !. In fact one has
(via the results of Nayak) :

Theorem (Neeman)

Let Se be the category whose objects are noetherian schemes, and
the morphisms are the separated maps essentially of finite type.

Given f : X → Y in Se there is a well defined functor
f ! : Dqc(Y )→ Dqc(X ) in the unbounded derived category.

The resulting “variance theory” (−)! on Se is a pseudofunctor.

There is a map of variance theories (−)× −→ (−)!.

The mansucript in question is:
Neeman, An improvement on the base-change theorem and the
functor f !, arXiv:1406.7599.
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The Fundamental class

For an embedding of varieties X ↪→ P over a field k, dimX = d ,
dimP = N, P smooth, to give the fundamental class

[X ] ∈ HN−d
X (P, ΩN−d

P/k )

is to give a map (πX=structural map)

cX : Ωd
X/k [d ]→ π!

Xk

which is an isomorphism on the smooth locus. This idea goes back
to Grothendieck and is developed by El Zein (over C)(1978) and
Lipman (1984).

Pramathanath Sastry Grothendieck Duality - the abstract approach



Introduction
Bousfield techinques

Quasi-perfect scheme maps
Base Change, Verdier, Fundamental Class

More generally (Alonso-Jereḿıas-Lipman (2014)): Let f : X → Y
in Se be flat and equidimensional of relative dimension d .

X
δ // X ′′

♣

p2 //

p1

��

X

f
��

X
f
// Y

(♣ cartesian)

Since δ∗ is left-adjoint to δ!, the natural isomorphisms 1 −→∼ δ!p!
i
,

i = 1, 2, give us maps

µi : δ∗ −→ p!
i

(i = 1, 2)

as well as the base change isomorphism:

β = β(♣) : p∗
2
f ! −→∼ p!

1
f ∗.
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Since p1 is of finite tor-dimension (it is flat!), β is an isomorphism
between functors from Dqc(Y ) to Dqc(X ). ← unbounded derived
categories.

Definition

The fundamental class of f

Cf : Lδ∗δ∗f
∗ → f !,

a map between functors from Dqc(Y ) to Dqc(X ), is the composite

Lδ∗δ∗f
∗ −−−→

via µ1

Lδ∗p!
1
f ∗ ˜−−−−→

Lδ∗β−1
Lδ∗p∗

2
f ! ˜−−−−→

natural
f !
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This gives a canonical composite

Ωd
f [d ] −→ H−d(Lδ∗δ∗OX )[d ] −→ H−d(f !OY )[d ] −→ f !OY

whence a map (also called the fundamental class)

cf : Ωd
f [d ]→ f !OY .

On the other hand if f is smooth we have

(∗) f !OY −→∼ Lδ∗p∗
2
f !OY −̃−→

β
Lδ∗p!

1
f ∗OY = Lδ∗p!

1
OX
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Since δ is a regular immersion, δ! −→∼ Lδ∗(−)⊗ ∧dNδ[−d ] (Nδ=
normal bundle for δ) whence

(∗∗) Lδ∗ −→∼ δ!(−)⊗X ∧dN∗δ [d ] = δ!(−)⊗ Ωd
f [d ].

Note δ is clearly quasi-perfect (δ∗ sends perfects to perfects).

Substituting (∗∗) in (∗),i.e., in f !OY −→∼ Lδ∗p!
1
OX , we get

Verdier’s isomorphism:

vf : f !OY −→∼ Ωd
f [d ].

Theorem (Lipman-Neeman)

Let f be smooth of relative dimension d . Then

cf = v−1
f .
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cf : Ωd
f [d ] → f !OY is compatible with flat base change on Y .

(Alonso-Jereḿıas-Lipman 2014).

If f is Cohen-Macaulay, f !OY is compatible with arbitrary base
change, (and if f is smooth, so is Ωd

f ). (Lipman, 1979)

In the smooth case,vf is compatible with arbitrary base change
(Sastry, 2004).

Lipman and Neeman then deduce that cf is therefore compatible
with arbitrary base change.
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Below ωf = H−d(f !OY ) and we make the identification
f !OY = ωf [d ]. (Similarly for g .)

U
u //

g
��
♣

X

f
��

V v
// Y

u∗Ωd
f

u∗vf // u∗ωf

β(♣)

��
Ωd
g

//
vg

// ωg
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Difficulty with Verdier as a starting point

Suppose f : X → Y is smooth and proper of relative dimension d .
Let

∫
f – the Verdier trace/integral – be defined by the

commutativity of

Rd f∗Ω
d
f

∫
f

11

˜
H0(vf )

// H0(Rf∗f
!OY )

H0(Trf )

��
OY

We do not know
∫
f , not even when X = Pd

Y and f : X → Y the
structural map π = πY : Pd

Y → Y and Y = Spec k . Or, . . . did not
know until now.
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Residues and Traces via Verdier

In recent (as yet unpublished) work, Suresh Nayak and I show

When f = πY ,
∫
f is the usual map Rdπ∗Ω

d
π → OY .

In other cases,
∫
f is determined through residues.

Hd
Z (X , Ωd

f )

resZ 22

// // Hd(X , Ωd
f )∫

f
��
A

In the picture above Y = SpecA. The residue along Z ,
resZ = resZ ,f , is the composite indicated. Z → Y is finite
dominant.
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Hd
Z (X , Ωd

f )

resZ 22

// // Hd(X , Ωd
f )∫

f
��
A

“Residues determine

∫
”

If Z is contained in an affine open subscheme U = SpecR of
Y , and is given up to radical by the vanishing of t1, . . . , td ,
then elements of Hd

Z (X , Ωd
f ) can be represented by generalised

fractions of the form
[

µ

t
α1
1 ,...,t

αd
d

]
, with µ ∈ Ωd

R/A.

We show that the expressions

resX/Y

[
µ

tα1
1 , . . . , tαd

d

]
:= resZ

[
µ

tα1
1 , . . . , tαd

d

]
satisfy most of the residue formulae given in Hartshorne’s [RD].
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This is closely related to:
Neeman: Traces and Residues, Indiana U. Math. J., vol. 64, no. 1,
2015.
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Thank you!

Happy Birthday, Amnon!
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Reminiscences of Grothendieck and his school. Luc Illusie with
Alexander Beilinson, Spencer Bloch, Vladimir Drinfeld, et.al.
Notices of the AMS, vol 57, no.9, Oct 2010.
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. J. Lipman
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