
SPECTRAL SEQUENCES FOR BIGRADED COMPLEXES

PRAMATHANATH SASTRY

There are very few proofs here. I am outlining a utilitarian approach to spectral
sequences concentrating on those facts which are useful to algebraic geometers. The
idea is to take the properties (1)–(4) listed in Subsection 1.2 and Theorem 1.2.3 as
black-boxes and see what can be deduced. A considerable amount can be, using
elementary arguments. All the “non-elementariness” is pushed to the black-boxes
mentioned. In my experience, proving the “black-box statements” is not difficult
either. But they seem artificial statements the first time one sees them (and the
second time, and the third time, . . . ). It might be an idea to see what one can do
with them. This is all the spectral sequences I have ever used in research, and I
often forget what happens when Ep,q

2 ’s vanish for certain (p, q)’s. (Do we have a
map from the total cohomology to Ep,q

r or is it the other way round? And is the map
surjective, injective? And when is it an isomorphism?) I have always successfully
deduced what is true from those black-boxes. I should add that I always remember
regions R1, R2, R3, and R4, but never really remember what vanishing on each
implies. I just deduce it every time (doesn’t take long). In any case, with derived
categories, who really needs spectral sequences?

Throughout K• will be a complex of modules over a ring A with coboundary ∂.
Our notations and assumptions are as follows.

(1) The underlying graded module of K• has a bigrading:

Kn =
⊕

p+q=n

Kp,q.

(2) We will write

∂p,qr : Kp,q → Kp+r,q−r+1

for the composite Kp,q ↪→ Kp+q ∂p+q

−−−→ Kp+q+1 � Kp+r,q−r+1.
(3) We will assume that

Kp,q = 0 (p < 0 or q < 0)

and further that

∂p,qr = 0 (r < 0).

1. Basics

1.1. Filtrations. Let F iK• be the graded sub-module of K• whose n-th graded
piece is

F iKn =
⊕

p+q=n, p≥i

Kp,q.
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The assumption that ∂p,q = 0 for p < 0 implies that ∂n(F iKn) ⊂ F iKn+1. Thus
F iK• is a subcomplex of K• for every in integer i, and we have a decreasing
filtration of complexes

K• = F 0K• ⊃ F 1K• ⊃ · · · ⊃ FnK• ⊃ . . . .
For each n and each p we have a map Hn(F pK•) → Hn(K•).1 Let the image of
this map be denoted F pHn(K•). Then we have a another filtration

Hn(K•) = F 0Hn(K•) ⊃ F 1Hn(K•) ⊃ · · · ⊃ FnHn(K•) ⊃ . . . .
The idea is to compute Hn(K•) via F pHn(K•) and to compute the latter us-
ing Hn(F pK•) and the surjective map Hn(F pK•) � F pHn(K•). Unfortunately
it is not so simple to compute Hn(F pK•), or to work out the comparison map
Hn(F pK•) � F pHn(K•) explicitly. One uses approximations and “in the limit”
one obtains only the graded pieces F pHn(K•)/F p+1Hn(K•). If there is extra in-
formation available, one can reconstruct Hn(K•) from the graded pieces for the
filtration {F pH(K•)}, i.e., the modules F pHn(K•)/F p+1Hn(K•).

1.2. The modules Ei,j
r . To lighten notation let Hn = Hn(K•) and GrpHn =

F pHn/F p+1Hn. Here is how GrpHn is obtained as a “limit”. First, for each triple
of integers (i, j, r) there are modules Ei,j

r , which we will define later (see (1.2.5)),
and maps

dr : Ei,j
r → Ei+r,j−r+1

r

such that d2r = 0 (see (1.2.6)). These have the following properties.

(1) For a pair of integers (p, q),

Ep,q
0 = Kp,q

and

d0 = ∂p,q0 .

(2) Consider the short exact sequence of complexes

0 −→ F p+1K• −→ F pK• −→ F pK•/F p+1K• −→ 0.

Then

Ep,q
1 = Hq(F pK•/F p+1K•).

The map d1 : Ep,q
1 → Ep+1,q

1 is the one induced by the map ∂p,q1 : F pK• →
F p+1K•.

(3) For each triple of integers (i, j, r), the module Ei,j
r+1 is given by the formula

(1.2.1)
ker (Ei,j

r
dr−→ Ei+r,j−r+1

r )

im (Ei−r,j+r−1
r

dr−→ Ei,j
r )

= Ei,j
r+1.

(4) Since Ei,j
r is a sub-quotient of Ei,j

r−1, therefore it is a subquotient of Ki,j =

Ei,j
0 . Thus the module Ei,j

r = 0 if either i or j is negative. In particular,
if r > j + 1, then the map dr : Ei,j → Ei+r,j−r+1 is zero. This means that
for r > j + 1 we have a surjective map, Ei,j

r � Ei,j
r+1. Composing these we

get surjective maps

(1.2.2) θrs : Ei,j
r � Ei,j

s , (j + 1 < r < s).

1Note that for i ≤ 0, F iK• = K• and F iHn(K•) = Hn(K•), and in this case the map is the
identity.
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Thus for fixed (i, j), the collection {Ei,j
r }r|r>j+1 forms a directed system.

The main result is:

Theorem 1.2.3. With the above notations we have

GrpHp+q = lim−−→r
Ep,q

r

where for fixed (p, q), {Ep,q
r }r is the direct system arising from the maps (1.2.2).

Here is the official definition of Ei,j
r for a triple (i, j, r) of integers. First, define

the following modules:

Zi,j
r = {x | x ∈ F iKi+j and dx ∈ F i+rKi+j+1}(1.2.4)

Bi,j
r = {x | x ∈ F iKi+j and x = dy for some y ∈ F p−rKi+j−1}.

Then we define Ei,j
r in the following way:

(1.2.5) Ei,j
r = Zi,j

r /(Bi,j
r−1 + Zi+1,j−1

r−1 ).

Note that ∂(Zi,j
r ) ⊂ Zi+r,j−r+1 whence we have a map Zi,j → Ei+r,j−r+1

r . It is

easy to check that this map vanishes on Bi,j
r−1 + Zi+1,j−1

r−1 , and hence we get the
map

(1.2.6) dr : Ei,j
r → Ei+r,j−r+1

r .

Remark 1.2.7. The direct system {Ep,q
r }r|r>q+1 stabilises in a finite number of

steps. Indeed we have already seen that dr : Ep,q
r → Ep+r,q−r+1

r is zero if r > q+ 1.
Similarly, using the fact that Ei,j

r = 0 if i < 0 (see property (4) in the itemised list
above), we see that Ep−r,q+r−1 = 0 if r > p. Thus

Ep,q
r = Ep,q

s (max{p, q + 1} < r ≤ s).
In particular, via Theorem 1.2.3, we get

GrpHp+q = F pHp+q/F p+1Hp+q = Ep,q
r (max{p, q+1} < r).

1.3. Terminology and Notations. The collection {Ep,q
r }p,q,r together with the

collection of maps {dr} is the spectral sequence associated with the bigraded complex
K•. The relationship between the Ep,q

r and the cohomologies Hn(K•) is described
by the phrase Ep,q

r abuts to Hp+q(K•). The following shorthand is often used to
denote this “abutment”

Ep,q
r =⇒p Hn(K•)

where it is understood that n = p+ q. Since Ep,q
2 is often the most useful term of

the spectral sequence, one also writes

Ep,q
2 =⇒ Hp+q(K•)

as a shorthand for Ep,q
r abuts to Hn(K•).

2. Getting information about Hn(K•) from Ep,q
r

In what follows we fix a point (p, q) in R2 such that p and q are positive integers
and set n = p+ q. Since GrpHn = lim−−→r

Ep,q
r we will often write

Ep,q
∞ = GrpHn.

We will assume r ≥ 2, though in most applications I know r = 2.2

2In the Hodge to DeRham spectral sequence, the case r = 1 is the critical one.
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2.1. Regions in the grid. Define the following four subsets of R2:

R1 = {(x, y) ∈ Z2 | x+ y = n, y > q}
= {(x, y) ∈ Z2 | x+ y = n, x < p},

R2 = {(x, y) ∈ Z2 | x+ y = n, y < q}
= {(x, y) ∈ Z2 | x+ y = n, x > p},

R3 = {(x, y) ∈ Z2 | x+ y = n− 1, y > q}
= {(x, y) ∈ Z2 | x+ y = n− 1, x < p− 1},

R4 = {(x, y) ∈ Z2 | x+ y = n+ 1, y < q}
= {(x, y) ∈ Z2 | x+ y = n+ 1, x > p+ 1}.

Interesting things can be said about Hn(K•) when {Ep,q
r } vanish along these re-

gions. We take this up in the next few subsections.

Remark 2.1.1. The regions Ri depend upon (p, q). So perhaps one should have
indexed them as Ri(p, q).

2.2. Ei,j
r vanishing on Rk. Here are the elementary arguments on which things

hinge.

2.2.1. Vanishing on R1. Suppose Ei,j
r = 0 for all (i, j) ∈ R1. Since every Ei,j

s ,
s ≥ r, is a sub-quotient of Ei,j

r , we have Ei,j
s = 0 for (i, j) ∈ R1 and s ≥ r. Thus,

going to the direct limit,

GriHn = 0 (i = 0, . . . , p− 1).

This means

Hn = F 0Hn = F 1Hn = · · · = F pHn

and hence

GrpHn = Hn/F p+1Hn.

Thus we have a surjective map

Hn � Ep,q
∞ .

2.2.2. Vanishing on R2. Suppose Ei,j
r = 0 for (i, j) ∈ R2. Then arguing as we did

above, GriHn = 0 for i > p. This means

F p+1Hn = F p+2Hn = · · · = Fn+1Hn = 0.

(The last equality follows from the relation Fn+1Kn = 0.) Thus GrpHn = F pHn.
In other words we have an injective map

Ep,q
∞ = F pHn ↪→ Hn.

2.2.3. Vanishing on R3. If Ei,j
r = 0 for (i, j) ∈ R3 then Ei,j

s = 0 for all s ≥ r
and (i, j) ∈ R3. For such s, we have Ep−s,q+s−1

s = 0 since (p − s, q + s − 1) ∈ R3

(recall s ≥ r ≥ 2). It follows that Ep,q
s+1 = ker (Ep,q

s
ds−→ Ep+s,q−s+1

s ). Thus we have
injective maps

. . . ↪→ Ep,q
s ↪→ . . . Ep,q

r+2 ↪→ Ep,q
r+1 ↪→ Ep,q

r .

In particular we have an injective map

Ep,q
∞ ↪→ Ep,q

r .
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2.2.4. Vanishing on R4. If Ei,j
r = 0 for (i, j) ∈ R4 then ker (Ep,q

s
ds−→ Ep+s,q−s+1s) =

Ep,q
s for all s ≥ r. Thus we have surjective maps

Ep,q
r � Ep,q

r+1 � Ep,q
r+2 � · · ·� Ep,q

s (r ≤ s).

In particular we have a surjective map

Ep,q
r � Ep,q

∞ .

Remarks 2.2.1. 1) If Ei,j
r = 0 on R1 ∪ R2 then GriHn = 0 for i 6= p, whence

Hn = F 0Hn = F 1Hn = · · · = F pHn and F p+1Hn = F p+2Hn = · · · = Fn+1Hn =
0. Thus Hn = F pHn = Ep,q

∞ .
2) Similarly if Ei,j

r = 0 on R3 ∪R4 we have an isomorphism

Ep,q
r −→∼ Ep,q

∞ .

Rather than appealing to the edge homomorphisms, one notes that Ep,q
r = Ep,q

r+1 =
· · · = Ep,q

r+j = · · · = Ep,q
∞ for j ≥ 0.

The useful result is the following (proofs from arguments given above the Re-
marks and in the Remarks):

Proposition 2.2.2. With notations as above, we have:

(a) If Ei,j
r = 0 for (i, j) ∈ R1 ∪R3 then there is a map

Hn(K•)→ Ep,q
r

which factors as

Hn(K•) � Ep,q
∞ ↪→ Ep,q

r .

(b) If Ei,j
r = 0 for (i, j) ∈ R2 ∪R4 then there is a map

Ep,q
r → Hn(K•)

which factors as

Ep,q
r � Ep,q

∞ ↪→ Hn(K•).

The maps in (a) and (b) are called edge homomorphisms.

(c) If Ei,j
r = 0 for (i, j) ∈ R1 ∪R2 then

Hn(K•) = Ep,q
∞ .

(d) If Ei,j
r = 0 for (i, j) ∈ R3 ∪R4 then

Ep,q
r −→∼ Ep,q

∞ .

(e) If Ei,j
r = 0 for (i, j) ∈ R1 ∪R2 ∪R3 then the edge homomorphism from (a)

is injective, i.e., we have an injection

Hn(K•) ↪→ Ep,q
r .

(f) If Ei,j
r = 0 for (i, j) ∈ R1 ∪R2 ∪R4 then the edge homomorphism in (b) is

surjective, i.e., we have a surjective map

Ep,q
r � Hn(K•).

(g) If Ei,j
r = 0 for (i, j) ∈ R1 ∪R2 ∪R3 ∪R4 then we have an isomorphism

Ep,q
r −→∼ Hn(K•).
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Remark 2.2.3. The requirement that K•,• live in the “first quadrant” can clearly
be relaxed in the above considerations. The above results hold if there exist integers
p0 and q0 such that Kp,q = 0 is either p < p0 or q < q0. Moreover the requirement
that Kp,q be A-modules can also be relaxed. We can work over an abelian category
A and the results hold true.

3. Examples

The following two examples (the first concerning dominant maps of varieties and
the second concerning proper maps between noetherian schemes) are to show how
one uses Proposition 2.2.2 if one accepts the form of Ep,q

2 associated with the Leray
spectral sequence. Nothing more than the E2 term of this spectral sequence is
needed. The spectral sequence itself is described in a later section of these notes
for completeness. That should not hinder understanding of what is given in this
section.

3.1. Dominant map of varieties. This example is essentially [L1, pp.42–43, Re-
mark (4.3.1)]. Let k be a field, f : V → W a map between proper k-varieties3

such that f is surjective, dimW = r, dimV = r + d. Let G be a quasi-coherent
OV -module. We have a spectral sequence, the Leray spectral sequence (see Subsec-
tion 4.3 below for details on its definition)

Hp(W, Rqf∗G ) =⇒ Hp+q(V, G ).

Let p = r and let q ≥ 0 be arbitrary and consider the regions Ri, i = 1, 2, 3, 4 for
this choice of (p, q). Since dimW = r therefore

Hi(W, Rjf∗G ) = 0 (i > r, j ≥ 0).

This means that Eij
2 = 0 for (i, j) ∈ R2 ∪R4. Hence we have a canonical map

Hr(W, Rqf∗G ) −→ Hr+q(V, G ).

The quasi-coherent sheaf Rqf∗G is supported on a closed subset of W over which
the fibres of f have dimension at least q. To see this, use first the fact that G is
the direct limit of coherent sheaves, to reduce to the case where G is coherent, and
then appeal to [EGA-III, (4.2.2)]. The statement about direct limits can be found
in [EGA-01, p.320, (6.9.12)]. We point out that cohomologies of sheaves commute
with direct limits. Coming to where we were before we got distracted, Rqf∗G is
supported on a closed subset of W over which the fibres of f have dimension at
least q. If q > d then this closed subset has dimension at most r+d−q−1, whence

Hi(W, Rjf∗G ) = 0 (j > d, i+ j > r + d).

Setting (p, q) = (r, d) to work out the regions R1, R2, R3, and R4, we see that

Ei,j
2 = 0 for (i, j) ∈ R1 ∪R2 ∪R4. Hence we have a surjective map

Hr(W, Rdf∗G ) −→ Hr+d(V, G ).

If further f is flat, all the fibres are of dimension d and we have Rjf∗G = 0
for j ≥ d, again by reducing to coherent G via a direct limit argument, and using
semi-continuity for coherent G . In this case the region R1 for (p, q) = (r, d) is also

a region where Ei,j
2 vanishes, and hence we have an isomorphism

Hr(W, Rdf∗G ) −→∼ Hr+d(V, G ).

3A k-variety will mean a separated, finite-type k-scheme which is reduced and irreducible.
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3.2. Proper maps and coherence. One of the nicest examples of the use of
the Leray spectral sequence is the proper mapping theorem of Grothendieck. The
theorem in the context of coherent analytic sheaves is due to Grauert. When f is
a projective morphism, the result is due to Serre (at least for varieties over a field)
and is given in Hartshorne’s Algebraic Geometry (see [H, p.228, Theorem 5.2 (a)]).
The general case follows from the special case, but one needs spectral sequences
and Chow’s Lemma as we shall see below.

Theorem 3.2.1. Let f : X → Y be a proper map of schemes with Y noetherian.
If F is a coherent OX-module, then the OY -modules Rpf∗F , p ≥ 0, are coherent.

Proof. We will use noetherian induction on the support of F . Recall that the
principle of noetherian induction is the following:

Suppose Z is a noetherian scheme and P a property of closed subschemes of Z.
Suppose further that for every closed subscheme V of X the following implication
holds:

(Every strict closed subscheme of V has property P) =⇒ (V has property P).

Then every closed subscheme of Z has the property P.
By a “strict closed subscheme” W of V , we mean W is a closed is a closed

subscheme of V but W 6= V .
Since f is proper and Y is noetherian, X is noetherian and therefore the principle

of noetherian induction is a valid principle. Thus we may assume Rpf∗G is coherent
for all p ≥ 0 whenever G is a coherent OX -module such that Supp G ( X (note that
if G is coherent and supported at a closed point of X, then Rpf∗G is coherent for
all p ≥ 0). To be very precise, we are regarding Supp G as a closed subscheme of X,
not merely as a closed subset of X, and the relationship “(” is a statement about
schemes and not just about the underlying sets. If we show Rpf∗F is coherent
under this induction hypothesis, we are done.

By Chow’s Lemma (see, for example, [H, p.107, Exercise 4.10]) we can find a
projective map π : X ′ → X such that f ◦π is proper and such that there is a dense
open subscheme U of X with the property that π−1(U) → U is an isomorphism.
Fix such a π. We have the Leray spectral sequence (see Subsection 4.3)

(Rpf∗ ◦Rqπ∗)(π
∗F ) =⇒ Rp+q(f ◦π)∗(π

∗F ).

For j ≥ 1, Supp(Rjπ∗π
∗F ) ( X since Rjπ∗π

∗F is supported outside U . By
our induction hypothesis this means that (Rpf∗ ◦Rjπ∗)(π

∗F ) is coherent for p ≥
0 and j ≥ 1. In other words Ep,j

2 is coherent for p ≥ 0 and j ≥ 1. We will

now show that Ep,0
2 is also coherent for p ≥ 0. Fix such a p. First note that

the regions R2 and R4 for (p, 0) are in the loci for the vanishing of Ei,j
2 . This

means that we have a surjective map Ep,0
2 � Ep,0

∞ , and an injective map Ep,0
∞ ↪→

Rp(f ◦π)∗(F ). The map f ◦π is projective, therefore Rp(f ◦π)∗(F ) is coherent
(cf. [H, p.228, Theorem 5.2 (a)]). It follows that Ep,0

∞ is coherent. With J equal to

the kernel of Ep,0
2 → Ep,0

∞ , we have a short exact sequence

0 −→ J −→ Ep,0
2 −→ Ep,0

∞ −→ 0.

To show Ep,0
2 is coherent, it is enough to show that J is coherent, which we now

proceed to do.
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Since Ep,−r+1
r = 0 for all r ≥ 2, the map Ep,0

r → Ep,0
r+1 is surjective for all r ≥ 2.

For r ≥ 2 let Kr = ker (Ep,0
r � Ep,0

r+1) and Jr = ker (Ep,0
2 � Ep,0

r ). Note J2 = 0
and J3 = K2. Clearly Kr

∼= Jr+1/Jr for r ≥ 2.

Now, E−j,p+j−1
p+j = 0 for j ≥ 1. This means that dp+j : E−j,p+j−1

p+j → Ep,0
p+j is the

zero map. Hence Kr = 0 for r ≥ p+ 1. In other words, we have

Ep,0
p+1 = Ep,0

p+2 = Ep,0
p+3 = · · · = Ep,0

∞ .

The surjective map Ep,0
2 � Ep,0

∞ factors as

Ep,0
2 � Ep,0

3 � Ep,0
4 · · ·� Ep,0

r · · ·� Ep,0
p+1 = Ep,0

∞ .

We have a filtration.

0 = J2 ⊂ J3 ⊂ J4 ⊂ · · · ⊂ Jp+1 = J.

For j ≥ 1 and r ≥ 2, Ei,j
r is a subquotient of Ei,j

2 , and hence is coherent. In
particular, for r ≥ 2, Ep−r,r−1

r is coherent. Thus the image of Ep−r,r−1
r under dr,

namely Kr, is coherent. In particular J3(= K2) is coherent. Suppose Jr is coherent
for some r ≥ 3. Consider the short exact sequence

0 −→ Jr −→ Jr+1 −→ Kr −→ 0.

Since Kr and Jr are coherent, we conclude that Jr+1 is coherent. Thus Jr is
coherent for all r ≥ 3. In particular J = Jp+1 is coherent. As we argued earlier,
this means Rpf∗(π∗π

∗F ) is coherent.
Now consider the exact sequence of OX -modules:

0 −→ K −→ F −→ π∗π
∗(F ) −→ C −→ 0

where K and C are respectively the kernel and cokernel of F → π∗π
∗(F ). Clearly

K and C are supported outside U and hence by our induction hypothesis, Rpf∗K
and Rpf∗C are coherent. Let G be the image of the map F −→ π∗π

∗(F ). The
above exact sequence breaks up into the following two short exact sequences:

(3.2.2) 0 −→ K −→ F −→ G −→ 0

and

(3.2.3) 0 −→ G −→ π∗π
∗F −→ C −→ 0.

Since Rpf∗C and Rpf∗(π∗π
∗F ) are coherent for all p ≥ 0, the long exact sequence

of higher direct images of f associated with (3.2.3) shows that Rpf∗G is coherent
for all p ≥ 0. We repeat this argument for the long exact sequence arising from
(3.2.2) (noting the fact that Rpf∗G and Rpf∗K are coherent for p ≥ 0) to get the
required result. �

4. Some Double Complexes and associated Spectral Sequences

4.1. Cartan-Eilenberg resolutions. Suppose A is an abelian category with enough
injectives, and C• a bounded below complex in A , say Cq = 0 if q < q0. One can
find a double-complex I•,• (whose total complex is written I•) of injectives in A
and maps εq : Cq → I0,q fitting into the diagram below satisfying the following:

(1) Ip,q = 0 if either p < 0 or q < q0.
(2) The horizontal rows are exact, i.e., for each q ≥ q0, Cq → I•,q is an injective

resolution.
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(3) Let Zp,q = Zp,q(I) be the kernel of the “vertical differential” Ip,q → Ip,q+1.
Then Z•,q is an injective resolution of Zq = Zq(C•), where Zq → Z•,q is
the natural map induced by C• → I•.

(4) Let Bp,q = Bp,q(I) be the image of the vertical differential Ip,q → Ip,q+1.
Then B•,q is an injective resolution of Bq = Bq(C•). The map Bq → B0,q

is (again) the natural map arising from C• → I•.
(5) Let Hp,q = Hp,q(I) be the q-th cohomology of the complex Ip,•. Then H•,q

is an injective resolution of Hq(C•) (again via C• → I•).

...
...

...

0 // Cq+1

OO

εq+1
// I0,q+1 //

OO

I1,q+1 //

OO

· · ·

0 // Cq

OO

εq // I0,q //

OO

I1,q //

OO

· · ·

0 // Cq−1

OO

εq−1
// I0,q−1 //

OO

I1,q−1 //

OO

· · ·

...

OO

...

OO

...

OO

Such a “resolution” of C• always exists. It is by no means unique. It is called
a Cartan-Eilenberg resolution of C•. For completeness we provide a proof of its
existence, though the reader is urged to skip the construction on the first reading.

Pick arbitrary injective resolutions for Bq and for Hp(C•), with the caveat that
injective resolutions of zero objects will be chosen to be the zero injective resolution.
Call these resolutions B•,q and H•,q respectively. Since

(∗) 0→ Bq → Zq → Hq(C•)→ 0

is a short exact sequence of objects, one can use the Horseshoe Lemma to get an
injective resolution of Z•,q of Zq which fits into a short exact sequence of complexes

(†) 0→ B•,q → Z•,q → H•,q → 0

lifting (∗). Next we have an exact sequence

(∗∗) 0→ Zq → Cq → Bq+1 → 0.

Since we have injective resolutions for the two ends of the short exact sequence,
another application of the Horseshoe Lemma gives us an injective resolution I•,q

which fits into a short exact sequence of complexes

(‡) 0→ Z•,q → I•,q → B•,q+1 → 0

lifting (∗∗). Note that since we dealing with injective modules in (†) and (‡) we
have decompositions.

(4.1.1) Ip,q = Zp,q ⊕Bp,q+1 = Bp,q ⊕Hp,q ⊕Bp,q+1.
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It follows that for a fixed p the composite

(4.1.2) Ip,q � Bp,q+1 ↪→ Ip,q+1

gives a complex Ip,•. In fact, as is easily checked, I•,• forms a double-complex and
the notations we have used in the construction are consistent with the notations
used in the list of requirements from a Cartan-Eilenberg resolution of C•.

The following (easy) Lemma is what gives us the Grothendieck spectral sequence.

Lemma 4.1.3. Let F : A → B be an additive functor. Then for every pair of
integers (p, q) we have

F (Hp,q) = Hq(F (Ip,•)).

Proof. Since F is additive, it respects direct sums. Apply F to the decompositions
in (4.1.1) to obtain

F (Ip,q) = F (Bp,q)⊕ F (Hp,q)⊕ F (Bp,q+1).

The q-th coboundary map for the complex F (Ip,•) can be computed via (4.1.2), and
it is the projection F (Ip,q) � F (Bp,q+1) followed by the inclusion F (Bp,q+1) ↪→
F (Ip,q+1). From here the q-cocycyles and the q-coboundaries in the complex F (Ip,•)
are easily seen to be F (Bp,q)⊕F (Hp,q) and F (Bp,q) respectively, giving the lemma.

�

4.2. The Grothendieck spectral sequence. Suppose G : A → B and F : B →
C are covariant exact functors such that A and B have enough injectives, and G(I)
is F -acyclic for injective objects I of A . Recall that an object B ∈ B is called
F -acyclic if RiFB = 0 for i ≥ 1. The Grothendieck spectral sequence for an object
X ∈ A is one whose Ep,q

2 term is RpF ◦RqG(X) and which abuts to Rn(F ◦G)(X).
In other words

(4.2.1) RpF ◦RqG(X)R =⇒ Rn(F ◦G)(X).

Let X ∈ A and let X → J• be an injective resolution of X. Let

C• = G(J•).

Let I•,• be a Cartan-Eilenberg resolution of C•. Let

K•,• = F (I•,•)

and set K• equal to the total complex of K•,•. The map C• → I• induces a map

(F ◦G)(J•) = F (C•)→ F (I•) = K•.

As in the early parts of these notes, let {Ep,q
r } denote the spectral sequence associ-

ated with the double-complex K•,•. By Lemma 4.1.3 we see that Ep,q
1 = F (Hq,p).

Note that Hq,p is an injective resolution of Hq(C•) = RqG(X). Therefore

Ep,q
2 = (RpF ◦RqG)(X).

To show (4.2.1) we have to show that Rn(F ◦G)(X) −→∼ Hn(K•). Now, by hy-
pothesis G(J i) is F -acyclic for each i since J i is injective. Therefore the q-th row
of K•,• is a resolution of the FG(Jq). It follows that the map (F ◦G)(J•)→ K• is
a quasi-isomorphism, giving Rn(F ◦G)(X) −→∼ Hn(K•).
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4.3. The Leray Spectral Sequence. This is a special case of the Grothendieck
spectral sequence. For a topological space X, let ShX denote the abelian cat-
egory of sheaves of abelian groups on X. If g : X → Y is a continuous map,
then we have the direct image functor g∗ : ShX → ShY . Moreover for a flasque
sheaf F ∈ ShX , the direct image g∗(F ) ∈ ShY is clearly flasque. In partic-
ular, if F is injective g∗(F ) is flasque, since injectives are flasque. (Actually,
g∗(F ) is also injective if F is, and this is because g−1 : ShY → ShX is exact,
HomY (−, g∗(F )) −→∼ HomX(g−1(−), F ), and the last functor is exact.) Sup-

pose X
g−→ Y

f−→ Z is a pair of continuous maps between topological spaces. Since
g∗ sends injectives to flasques (in fact to injectives), and flasque sheaves are f∗-
acyclic, therefore as a special case of the Grothendieck spectral sequence we have
for any F ∈ ShX the associated Leray spectral sequence:

(4.3.1) (Rpf∗ ◦Rqg∗)(F ) =⇒ Rp+q(f ◦ g)∗F .

In the event Z = {?} is a point, the above reduces to

(4.3.2) Hp(Y, Rqg∗F ) =⇒ Hp+q(X, F ).

References
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