
SELF DUALITY OF ELLIPTIC CURVES

1. Preliminaries

All schemes and varieties are over a fixed field k. A variety is a reduced, irre-
ducible and separated k-scheme X of finite type. The first two conditions, taken
together are equivalent to saying that every affine open subscheme of a variety is
the spectrum of an integral domain, and the third condition says that the diagonal
∆ ⊂ X ×k X is closed. Some comments (especially the scheme theoretic ones)
are to clarify issues for the more sophisticated reader (since a scheme is much more
than a topological space, and two non-isomorphic schemes could well have the same
underlying topology. This especially creates confusion when one says that a map
of schems is constant, for a closed “point” z on a scheme Z is repesented by many
different closed subschemes of Z, namely by each subscheme Spec OZ,z/m

n
z , as n

varies over positive integers. Here, as elsewhere, mz is the maximal ideal of the
local ring OZ,z. By the image of a map of noetherian schemes f : W → Z one
means the subscheme of Z defined by the (necessarily coherent) ideal sheaf of OZ

given by the kernel of the natural map of sheaves OZ → f∗OW .
My apologies for being pedantic. Actually, most of my scheme-theory colleagues

would say I am being very cavalier.
We will need the following facts:

1) If f : X → U is a map of k-varieties, with X connected and complete, and U
affine, then f is a constant. Indeed f(X) is a closed, complete connected subscheme
of U and U is affine, which forces f(X) to be supported in a point (the only complete
and affine schemes are finite sets of points, and any closed subscheme of an affine
scheme is again affine) . If we further insist that X is geometrically reduced and
geometrically irreducible (comes with the turf for elliptic curves X or even abelian
varieties X), then actually f(X) is a k-valued point, rather than an L-valued point,
where L is a non-trivial finite extension of k. The idea is that any any map from
X to an affine scheme must factor through the canonical map X → Spec Γ(X, OX)
(this is a universal property). If X is geometrically reduced and geometrically
irreducible, then Γ(X, OX) = k.

2) Let X, Y and U be k-varieties with X complete and X ×k Y geometrically
irreducible and geometrically reduced, x0 ∈ X, y0 ∈ Y and u0 ∈ U , k-rational
points. If

ψ : X ×k Y → U

a map of varieties, such that ψ({x0} × Y ) = {u0} and ψ(X × {y0}) = {u0} then
ψ(X ×k Y ) = {u0}. I mean this in the strong sense, namely that the hypothesis is
that the images of the “co-ordinate axes” are isomorphic to Spec k (and not SpecL
for a non-trivial k-extension L) and the conclusion is that the image of the product
is isomorphic to Spec k. In other words, this is really a scheme theoretic statement
and not merely a topological space statement. The correct way of thinking about
the k-rational point x0, for example, is as a k-scheme map (necessarily a closed

Date: July 19, 2019.
1



2 SELF DUALITY OF ELLIPTIC CURVES

immersion) x0 : Spec k ↪→ X. So when we say the image of ψ : X ×k Y → U is
the k-rational point x0 (i.e. it is “constantly x0”), we mean that ψ factors as

X ×k Y → Spec k
x0−→ U , where the first map is the structure map, coming from

the fact that X ×k Y is a k-scheme. Ditto for other statements.
The proof of the statement 2) follows from 1). Without loss of generality (by

making a base change to the algebraic closure of k). Pick an affine neighbourhood
U ′ of u0 in U , and consider W = U \ U ′. W is closed in U , whence its inverse-
image ψ−1(W ) in X ×k Y is closed. Since X is complete the natural projection
map pY : X ×k Y → Y is proper, whence pY (ψ−1(W )) is closed in Y . Let Y ′ :=
Y \ pY (ψ−1(W )). In set theoretic terms, Y ′ consists of those points y such that
there is a point on p−1Y (y) which maps into U ′ under ψ. Since ψ(x, y0) = u0 ∈ U ′,
clearly we have, y0 ∈ Y ′, whence Y ′ is non-empty. We can work with closed
points, since we are dealing with varieties over an algebraically closed field. For
each (closed point) y ∈ Y , let Xy := p−1Y (y) = X ×k Spec k(y) = X. Note that each
Xy is connected, (in fact it is geometrically reduced and irreducible) for otherwise
X×k Y would not be connected (and hence not irreducible). If y ∈ Y ′, then clearly
Xy maps into U ′ under ψ. By 1., ψ|Xy

: Xy → U ′ is a constant, since U ′ is affine. In
fact, since (x0, y) ∈ Xy, and ψ(x0, y) = u0, the constant is actually u0. It follows
that ψ is constant on X ×k Y

′. Since X ×k Y is irreducible, the non-empty open
subscheme X ×k Y

′ must be dense in X ×k Y . In the ordinary way, we would then
conclude that ψ is constant on X ×k Y (since it so on a dense open subset). But
our topologies are not Hausdorff. This is where our hypothesis that our varieties
are separated comes in. Since X ×k Y is separated, this means ψ is constant.

The statement in 2) goes under the name of rigidity.

2. Consequences of rigidity

By an abelian variety, we mean a group variety, which is complete. By Proposi-
tion 2.1.2 below, such a variety is commutative.

Proposition 2.1.1. Let A and B be abelian varieties. Let f : A → B be a map
of varieties such that f(0) = 0. Then f is a map of abelian varieties (i.e. it is a
homomorphism of group schemes).

Proof. Let mA : A×k → A and mB : B ×k B → B be the maps maps giving “addi-
tion” in A and B. We have to show that the diagram of varieties

A×k A

f×f
��

mA // A

f

��
B ×k B mB

// B

commutes. Let ϕ1 : A ×k A → B be the composite obtained by following the
downward arrow on the left followed by the horizontal arrow at the bottom, and
let ϕ2 : A×k A→ B be the other composite, i.e. “first go right and then south” (a
truer political axiom, I do not know of). Consider the map

ψ := ϕ1 − ϕ2.

All the hypotheses of 2) of the previous section (i.e. of rigidity) are satisfied by ψ
by taking X = A, Y = A, U = B, x0 = y0 = 0 and u0 = 0. It follows that ψ is the
zero map, whence the diagram commutes. �
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Proposition 2.1.2. If A is an abelian variety then mA ◦ sw = mA, where

sw: A×k A→ A×k A

is the automorphism of varieties obtained by switching factors.

Proof. Same idea. The difference between the two maps has to be constantly zero.
�

3. Elliptic curves

Let E be a complete smooth curve, of genus g such that E is a group variety
(necessarily with a rational point, namely 0 ∈ E). Then sheaf of differentials ωE/k

is free (an argument using translations for example), whence, 2g−2 = degωX/k = 0.
This means g = 1. Conversely, as we shall see, if X is a genus one smooth complete
curve with a rational point x0, then one can impose a group variety structure on X
with x0 = 0. From Proposition 2.1.1 this group variety structure is actually unique.

Now forget group structures temporarily. Suppose X is a complete smooth
curve. Very obviously X is the variety of effective degree one divisors on X, with
the universal family of degree one divisors being the diagonal embedding of X in
X ×k X. (We are lucky we are with working with curves, so that the diagonal is
a divisor). In other words X is the Hilbert scheme of effective degree one divisors
on X, and ∆ is the universal family of such divisors, where ∆ ⊂ X ×k X is the
diagonal embedding.

In the event you are wondering, here is how one would prove that (X, ∆) is
H1(X), where Hd(X) is the Hilbert scheme of effective degree d divisors on X. Let
q1 and q2 be the two projections on X ×k X and p1 and p2 their restrictions to
∆. Let S be a k-scheme, and let qS (resp. qX) be the projection X ×k S → S
(resp. X ×k S → X). Suppose D ⊂ X ×k S is a divisor such that the resulting

map D
pS−→ S is flat, and gives a family of effective degree one divisors on X. The

second half of the last sentence means that, with Xs := X ×k k(s), for s ∈ S, we
have D |Xs

is a (clearly effective) degree one divisor on Xs for every s ∈ S. We
have to produce a unique classifying map of k-schemes g : S → X such that D is
the pull-pack of ∆. But clearly pS : D → S is an isomorphism of schemes. Well, let
me elaborate just a bit. The map pS is quasi-finite (i.e. the fibres are finite, in fact
singletons) and proper. It is therefore finite and hence an affine map. Pick an affine
open subscheme U = SpecA of S. Since pS is an affine map, p−1S (U) is also affine,
equal to (say) SpecB. We have to show A → B is an isomorphism. Now, A → B
is a finite flat map. Moreover, for every maximal ideal m of A, A/m→ B ⊗A A/m
is an isomorphism (because, for every s ∈ S, the fibre p−1S (s) is an effective degree
one divisor on Xs, it is isomorphic (as a scheme!!) to Spec k(s)). By Nakayama
Am → Bm is an isomorphism for every maximal ideal m of A, whence A→ B is an
isomorphism. The map g : S → X is then the composite

S
p−1
S−−→ D ⊂ X ×k S

qX−−→ X.

It is easy to check that the above map fits the requirements.
Now suppose X has genus g = 1 as well as a rational point x0. I want to say that

in this case, if L is a line bundle on X such that degL = 1, then there is exactly
one effective divisor of degree one which gives rise to L. Since effective divisors of
degree one are necessarily of the form Dp = {p}, where p ∈ X, this would mean
that for each such line bundle L there is associated exactly one point p in X. The



4 SELF DUALITY OF ELLIPTIC CURVES

correspondence L 7→ p would then give the isomorphism between degree one line
bundles and X. One obtains the same for degree 0, by translation. (I am sweeping
issues of k-rationality etc, temporarily, under the rug.) Here is the idea for showing
that a degree one line bundle on X arises from exactly one degree one effective
divisor. Let K be any canonical divisor on X. Let D be any divisor of degree
1. We claim there is exactly one effective divisor linearly equivalent to it. Then
degK −D = −1 (we are using g = 1, and degK = 2g− 2 here). We conclude that
l(K − D) = 0. This means, by Riemann-Roch, that l(D) = 1 (this uses g = 1).
This means that that if D + (f) and D + (h) are effective, then f is a non-zero
scalar multiple of (h), whence (f) = (h). Thus there is a unique effective degree
one divisor linearly equivalent to D. Since this is effective divisor is of degree one
it must be of the form Dp = {p} where p is a point of X.

Here is how one would say it properly, in terms of universal properties. Let D0 be
the degree one effective divisor supported with multiplicity one at our rational point
x0, i.e., D0 = Dx0

. Let L0 be the line bundle on X arising from D0. Let L′1 be the
line bundle on X ×k X which arises from the divisor ∆ and set L1 := L′1 ⊗ q∗2L−10 .
Then L1 is a family of degree one line bundles on X, parameterized by X (the
parameter space is the second factor, and the ambient space on which line bundles
vary is the first factor). The pair (X, L1) enjoys the following universal property
(as we will prove):

If LS is any line bundle on a scheme S ×k X such that LS restricted to each
fibre Xs of S ×k X → S is of degree one, with LS |S×x0

a trivial line bundle, then
there is a unique map g : S → X such that LS is isomorphic to the pull-back of L1.

One has to make the argument relative when one works over S. First, semi-
continuity shows that R1qS∗(LS) = 0, whence qS∗LS is actually a line bundle on
S (need semi-continuity here too). Write M = qS∗LS . We have a natural map
q∗SM→ LS . This gives a map OX×kS → LS ⊗ q∗sM−1, and this is the same as sec-
tion σ of FS = LS ⊗ qS∗M−1. Clearly the family of line bundles on X given by FS

is the same as the family given by LS . Let D ⊂ X ×k S be the divisor arising from
the zero locus of σ. We claim that D is flat over S and gives a family of effective
degree one divisors on X parametrized by S. Firstly note that σ behaves well with
respect to base changes on S. More precisely, if S′ → S is a k-map and LS′ the pull
back of LS to X ×k S

′, and if M′, FS′ , σ
′ etc are obtained from LS′ , the way M,

FS , and σ etc were obtained from LS , then the “primed-objects” are the pull-backs
of “un-primed objects”. In particular the section σ′ of FS′ is the pull-back of the
section σ of FS .1 Specializing to the canonical maps S′ = Spec k(s) → S, where
s ∈ S, we see, for each s ∈ S, that σ ⊗ k(s) is a non-zero section of the degree one
line bundle LS |X×k{s} and its zero locus is precisely the unique effective degree one
divisor (i.e. a k(s)-rational point) Ds of Xs := X ×k Spec k(s), and this shows that
the fibre of D → S over s is the k(s)-rational point Ds.

To complete our proof that D → S is flat, we appeal to the following stan-
dard (and easy) fact from commutative algebra (see [M, (2) ⇒ (1), Corollary to
Thm. 22.5, p.177]).

1This is an aside, loosely related to what was just said. Since Γ(X ×k S, FS) = Γ(S, qS∗FS),
the section σ is a section of qS∗FS . But qS∗FS = qS∗LS ⊗M−1 by the projection formula,
i.e., qS∗FS = M⊗M−1 = OS , and a little thought shows that σ is the canonical section 1 of

qS∗FS = OS . Note that this means that the “zero-locus” of σ (thought of as a section of FS) in
X ×k S could never contain an entire fiber Xs of X ×k S → S. This is the same as saying that

D ∩Xs is at most zero-dimensional. In fact it is always a k(s)-rational point.
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Let A→ R be a local homomorphism of local rings (i.e. mAR ⊂ mR), such that
R is flat over A, and t ∈ mR is such that the image of t in R/(mAR) = R⊗A (A/m)
is a non-zero divisor in R/(mAR). Then B = R/tR is flat over A.

The proof that D is flat over S is along the following lines. We have to take a
local trivialization of LS over an open affine subscheme SpecR of X ×k S. Then
the section σ is the same as a map of R-algebras, R[T ] → R, which amounts to
giving an element t ∈ R. By definition, the closed subscheme D ∩SpecR of SpecR
is given by the vanishing of t, i.e., D ∩ SpecR = SpecR/tR, and the just cited
result from [M] applies. Now (X, ∆) is the Hilbert scheme H1(X), whence we have
a unique map g : S → X such that D is the pull back of ∆ under the base change
g. This means the pull back of L′ is FS , and the pull back of L is LS . Clearly, g is
the unique map which does this.

Anyway, the upshot is that (X, L1) is Pic1X/k. Reminding ourselves that D0 =

Dx0 and L0 the line bundle corresponding to D0. Setting L := L1⊗ p∗1L−10 , we see
that (X, L ) is the Jacobian of X, denoted either Pic

◦
X/k or J(X).

Recall we did not worry about the group structure on X to begin with. We have
obtained one on it now from J(X). If X started with a group structure such that
x0 is its identity element, then the two group structures on X, one from J(X) and
the other, the one we started with, would have to be the same by Proposition 2.1.1.
Indeed, apply the Proposition to the identity map X → J(X) = X, the left side
having the original group structure, and the right side the one from X’s role as the
Jacobian.
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