LEFT ADJOINTS TO DIRECT IMAGES

PRAMATHANATH SASTRY

Everything is noetherian (schemes, rings etc) and separated for simplicity (things work more generally - but). For a scheme $Z, Z_{q c}$ is the category of quasi-coherent \mathscr{O}_{Z}-modules. Suppose $f: X \rightarrow Y$ is affine. Let $Y_{f q c}$ denote the category of quasicoherent $f_{*} \mathscr{O}_{X}$-modules. Show that

$$
f_{*}: X_{q c} \rightarrow Y_{f q c}
$$

is an equivalence of categories. Note that the statement is trivially true when Y (and hence X) is affine, for then we are reduced to rings and modules. Cover Y by open affines, and note that the inverse images of these affines in X are affine and an open cover of X. Use an easy glueing argument to move from the results for the case $Y=\operatorname{Spec} A$ to the general case.

In particular, since $\mathscr{H} \operatorname{om}_{Y}\left(f_{*} \mathscr{O}_{X}, \mathscr{G}\right)$ is a quasi-coherent $f_{*} \mathscr{O}_{X}$-module for $\mathscr{G} \in$ $Y_{q c}$, we have a unique object $f^{!} \mathscr{G} \in X_{q c}$ such that $f_{*} f^{!} \mathscr{G}=\mathscr{H} o m_{Y}\left(f_{*} \mathscr{O}_{X}, \mathscr{G}\right)$.

Now suppose $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B, M$ a B-module and N an A-module. B is an A-algebra via f. The (Hom, \otimes)-adjointness gives us an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{B}\left(M, \operatorname{Hom}_{A}(B, N)\right) \xrightarrow{\sim} \operatorname{Hom}_{A}(M, N) . \tag{*}
\end{equation*}
$$

Moreover one has a map $e: \operatorname{Hom}_{A}(B, N) \rightarrow N$ given by evaluation at 1 , and $(*)$ is $\varphi \mapsto e \circ \varphi$.

Globalise these to the more general situation we are in (i.e., Y is not necessarily an affine scheme) to get

$$
\operatorname{Hom}_{X}\left(\mathscr{F}, f^{!} \mathscr{G}\right) \xrightarrow{\sim} \operatorname{Hom}_{Y}\left(f_{*} \mathscr{F}, \mathscr{G}\right) .
$$

for $\mathscr{F} \in X_{q c}$ and $\mathscr{G} \in Y_{q c}$. One can ask, how well does this localise over Zariski open sets in Y ? If f is finite and \mathscr{F} is coherent then $f_{\mathscr{F}}$ is also coherent, and the isomorphism above localises well. Convince yourself that in this case we have the following generalisation of $(*)$

$$
\begin{equation*}
f_{*} \mathscr{H} \operatorname{om}_{X}\left(\mathscr{F}, f^{!} \mathscr{G}\right) \xrightarrow{\sim} \mathscr{H} o_{Y}\left(f_{*} \mathscr{F}, \mathscr{G}\right) . \tag{**}
\end{equation*}
$$

In other words convince yourself that when $Y=\operatorname{Spec} A$ and $X=\operatorname{Spec} B$ and $A \rightarrow$ B is finite map, then $(* *)$ is $(*)$. Finally, let $\tau_{f}(\mathscr{G}): f_{*} f^{!} \mathscr{G}=\mathscr{H} o m_{Y}\left(f_{*} \mathscr{O}_{X}, \mathscr{G}\right) \rightarrow$ \mathscr{G} be the map which is locally the "e" (evaluation at 1) above. Show that on taking global sections, $\Gamma(X,(* *))$ has the following description. Let $\varphi: \mathscr{F} \rightarrow f^{!} \mathscr{G}$ be a map in $X_{q c}$ with \mathscr{F} coherent. Then its image under $\Gamma(X,(* *))$ is the composite

$$
f_{*} \mathscr{F} \xrightarrow{f_{*} \varphi} f_{*} f^{!} \mathscr{G}=\mathscr{H} \text { om }_{Y}\left(f_{*} \mathscr{O}_{X}, \mathscr{G}\right) \xrightarrow{\tau_{f}} \mathscr{G}
$$

[^0]
References

[EGA-III] A Grothendieck and J. Dieudonne, Élements de Géométrie Algébrique III, Publications Math. IHES 11, Paris, 1961
[H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.

[^0]: Date: February 8, 2017.

