
THE WEYL CHARACTER FORMULA–II

PRAMATHANATH SASTRY

1. Introduction

These notes are short on proofs. The basic notions required to state the character
formula are given. Proofs are pretty much the same as proofs for case of the unitary
group U(n) (see [2]), which is why they have been, in the main, omitted. Sadly, I
have no time to say anything about the Peter-Weyl theorem, though I had promised
something on it in [2]. It is easier to talk about semi-simple groups, and that is
what we will do, for the modifications required to make things work for more
general groups may well take us outside the realm of “basic notions”. Ironically,
U(n), which we have taken as the model case, is not semi-simple.

In what follows G is a compact connected Lie group. We will specialize to semi-
simple groups later.

2. Weyl Group

A subgroup T of G is called a maximal torus if T is a torus and there is no other
torus in G containing T is a Lie subgroup. It turns out that all maximal tori are
conjugate. This means that if W (T ) is the group N(T )/T , where T is a maximal
torus, and N(T ) its normalizer in G, then different T yield isomorphic W (T ). The
group W (T ) is called the Weyl group of (G, T ). From now onwards we fix the
maximal torus T , and denote W (T ) by W , and N(T ) by N .

Now, N acts on T . Indeed, each n yields the automorphism t 7→ ntn−1. However,
the automorphism group of T is GL(l, Z) where l = dimT , and hence is discrete.
Let No be the connected component of the identity of N . Our observations above
show that No acts trivially on T . Consequently, if H is the image of a one parameter
group in No, then H · T is a connected abelian group containing T . Maximality of
T forces the equality H · T = T . But such H generate No, and hence No = T . It
follows (since N is compact) that N/No is finite, i.e. the Weyl group W is finite.

Note that since No acts trivially on T , we have an action of W on T .

3. The Conjugation Theorem

In this section we state the analogue of Lemma3.1 of [2]. However, a few orienting
remarks about Lie algebras are probably necessary. Recall that the The tangent
space g of G at the identity 1 can be identified with (left) invariant vector fields1.

Elementary differential geometry tells us that if X̃ and Ỹ are two vector fields on
G (thought of as R—derivations of C∞(G)) then so is [X̃, Ỹ ] = X̃Ỹ − Ỹ X̃. This
gives a (non-associative) product on g, the so called Lie bracket which makes g into
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1i.e. vectoe fields X̃ on G such that lg

∗
X̃ = X̃ for every g ∈ G. Here lg stands for left

translation by g.
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a Lie algebra2 Moreover, the invariant vector fields are integrable, and the integral
curves are complete (i.e. they are defined on all of R). Let γ be the integral curve
corresponding to X ∈ g, which satisfies γ(0) = 1. The exponential of X , written
expX , is the element γ(1) ∈ G. This gives us the exponential map

exp : g −→ G.

If G is abelian, then exp is a map of Lie groups (g being identified with Rdim G)
and in fact exp in this case is a covering map—thus exp : g → G is the universal
covering space of G.

For each g ∈ G, we have an inner automorphism x 7→ gxg−1 of G whence a
(Lie-algebra) automorphism of g, which we denote Ad(g). This gives a Lie-group
map

Ad : G −→ Aut(g)

called the adjoint representation of G. It follows that we have a Lie algebra map

ad : g −→ EndR(g)

—the adjoint representation of the Lie algebra g. One checks easily that ad(X) =
[X, ].

For x ∈ G, the centralizer gx of x in g, is the subalgebra of g of elements fixed
by Ad(x). Fix a maximal torus T of G. If dim(T ) = l and one can show dim gx ≥ l
for all x ∈ G, and the set G′ of x for which equality holds is open and dense. If
x lies in G′, it is called regular (cf. [2], bottom of p.2). The integer l is called the
rank of G. Let T ′ be the regular elements in T .

We are now in a position to state the conjugacy theorem (cf. [2], Lemma 3.1. See
[1], p.161,Prop. 1.8 for a proof). Let

D : T −→ R

be the map

t 7→ det
[
Ad(t−1) − 1

]
g/t

where t is the Lie algebra of T 3.

Theorem 3.1. For x ∈ G and t ∈ T , the element xtx−1 depends only on the coset
xT . If Ψ(xT, t) = xtx−1,

Ψ : G/T × T ′ → G′

is an analytic map making G/T × T ′ into a (possibly disconnected) covering space
with covering degree equal to |W |. Moreover if dx, dt, dx̄ are the normalized in-
variant measures on G, T and Ḡ = G/T , then

Ψ∗(dx) = Ddx̄dt.

Before leaving this section we make one last comment. It turns out that the
conjugation theorem above can be used to prove that two maximal tori are conjugate
to each other (see, for e.g., [1], pp.159–160).

2In other words, (a)[X, Y ] = −[Y, X] and (b)[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0, for
X, Y, Z ∈ g.

3We may regard t as a subalgbra of g in a canonical way
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4. Lessons from the U(n) case

W acts on T and hence on L2(T ). For f ∈ L2(T ), and w ∈ W , fw will denote

the action of w on f . For χ ∈ T̂ , set

χ̃ =
∑

w∈W

ǫ(w)χw.

Call χ ∈ T̂ regular if the χw are distinct for distinct w ∈ W 4. From the lessons
learnt in proving Weyl’s character formula for U(n) we would like to do the follow-
ing:

• Identify a “nice” subset P of T̂ , such that {χ̃ |χ ∈ P} forms a basis for the
additive subgroup F of L2(T ) consisting of functions Φ with finite Fourier
series having integral coefficients, such that Φ is skew symmetric, i.e. Φw =
ǫ(w)χw5. (See Lemma 4.1 of [2]). Note that χ̃ = 0 if χ is not regular, and
hence P must necessarily consist of regular elements. If χ1 and χ2 are in the
same W orbit, then χ̃1 and χ̃2 differ by a sign and hence both cannot be in
P . If on the other hand χ1 and χ2 are in different W orbits, then χ̃1 and
χ̃2 are clearly orthogonal, and hence P provides us with an orthogonal basis
of the vector space V = F ⊗ C. Note that ||χ̃||2 = |W | for regular χ. (Cf.
[2] p.5, Lemma 4.1).

• Let

D(t) = det
[
Ad(t−1 − 1

]
g/t

(t ∈ T ).

We would like to have a factorization

D = ∆∆̄

where ∆ ∈ F . Moreover, we would like ∆ = χ̃ρ for some ρ ∈ P (cf. the proof
of [2], p.6, Thm. 4.1).

Given the above, then as in [2] Theorem4.1, we can prove that there is a on-one

correspondence between Ĝ and P such that for χ ∈ P , if Θχ is the character of the
corresponding irreducible representation of G, then

(Θχ)T = χ̃/∆.

This then would be the character formula6. The requirements listed above put
restrictions on the compact group G.

5. Positive characters and the Character formula

For a Lie algebra h over R, let hC denote its complexification, i.e. hC = H ⊗ C.
The map ad(tC) acts on gC, and since T is comapct and abelian, this action is
completely reducible and breaks up gC into a direct sum

gC = tC ⊕
⊕

α∈R

gα

4For example, if G = U(n), χm is regular if and only if m = (m1, . . . , mn) ∈ Zn has distinct
coordinates.

5For G = U(n), P was the set {(m1, . . . , mn) |m1 > . . . > mn}.
6A little thought shows that much is required of the “nice” set P . The properties we have

listed will only give the ambiguous formula (Θχ)T = ±χ̃/∆.
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each summand being non-zero and stable under tC. Moreover, tC acts on gα via
linear functional on tC, which we also denote by α. In other words

gα = {X ∈ gC | [H, X ] = α(H)X, H ∈ tC}.

The set R is called the set of roots, and each gα is called root space. They are
all of dimension 1. Thinking of elements of R as functionals, it turns out that for
H ∈ t, α(H) ∈ iR. Indeed, each root space is stable under Ad(T ) which acts on

gα via an element T̂ . This element is written ξα, and is called the global root. We
then have

Ad(t) · X = ξα(t) · X (t ∈ T, X ∈ gα.

Now, for H ∈ t, ξα(exp H) = eα(H). It follows that α(H) is purely imaginary.
One checks that [gα, gβ ] ⊂ gα+β if α + β ∈ R. If the sum of α and β is zero,

then the above bracket lies in tC. Otherwise it is zero.
Remove from it the finite number of hyperplanes determined by the functionals

α ∈ R. We get a dense open set whose connected compontnents are called Weyl
chambers. Each chamber is a convex cone. Fix one chamber, C+. The subset R+

of roots which are positive on C+ are called positive roots with respect to C+.
If G is semi-simple, i.e. if its fundamental group is finite, then one has a natural

inner product on g given by the Cartan-Killing form (X, Y ) 7→ tr(ad(X)ad(Y ).
Consequently one can talk about reflections sα along the hyperplane determines
by α ∈ R. The Weyl group can be interpreted as the group generated by sα as α
varies over the roots. Note that W acts on it. In fact it acts simply transitively on
the set of chambers.

Any χ ∈ T̂ gives rise to an element λχ ∈ it∗ such that

χ(exp H) = eλχ(H).

Indeed, any map from T → S1 gives rise to a map between the universal covering
spaces, and this map is unique once base points are fixed. Taking t and iR as the
respective covering spaces of T and S1, one can get λχ. In fact χ 7→ λχ embedds

T̂ as a lattice in it∗. Using the inner product on t (induced from g) we can identify
it∗ with it. Let Hλχ

∈ it be the element corresponding to λχ. We identify the set

P ⊂ T̂ with the set of characters χ such that Hλχ
lies in C+. A character χ is

called positive if it lies in P .
It remains to define ∆. Assume that

ρ =
1

2

∑

α∈R+

α

is also a positive root. Groups G for which this is true are called acceptable. Simply
connected G are always acceptable. Then set

∆ = ξ−1
ρ

∏

α∈R+

(ξα − 1) .

Note that ∆ depends on the choice of the positive chamber C+ and as such it is
better to denote it ∆+.

One checks that P and ∆ have all the properties outlined in Section 4. The road
to the character formula is now clear.

Since it is now 2:50 p.m., perhaps this is the place to stop!!
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