
THE WEYL CHARACTER FORMULA–I

PRAMATHANATH SASTRY

1. Introduction

This is the first of two lectures on the representations of compact Lie groups.
In this lecture we concentrate on the group U(n), and classify all its irreducible
representations. The methods give the paradigm and set the template for study-
ing representations of a large class of compact Lie groups—a class which includes
semi-simple compact groups. The climax is the character formula of Weyl, which
classifies all irreducible representations for this class, up to unitary equivalence.
The typing was done in a hurry (last night and this morning, to be precise), and
there may well be more serious errors than mere typos. Typos of course abound.

2. Fourier Analysis on abelian groups

It is well-known, and easy to prove, that a compact ableian Lie group 1 is nec-
essarily a torus T

n = S1 × . . . × S1 (n factors). A character on T = T
n is a Lie

group map χ : T → C∗ 2. The maps χm1,... ,mn
((t1, . . . , tn) 7→ tm1

1 . . . tmn

n ) lists
all characters on T as (m1, . . . , mn) varies over Zn. This is a fairly elementary
result—indeed, the image of a character χ must be a compact connected subgroup
of C∗, forcing χ to take values in S1 ⊂ C∗. From there to seeing χ must equal a
χm1,... ,mn

is easy (try the case n = 1 !).
T has an invariant Borel measure dt = dt1 . . . dtn (the product of the “arc

length” measures on the various S1 factors), the so called Haar measure on T 3.
We denote L2(T, dt) by L2(T). The classical result that “periodic” functions on
Rn have an expansion by Fourier series can be reformulated in a more conceptual
way—in fact as a special case of the Peter-Weyl theorem (see also 4.1).

Theorem 2.1. There is a Hilbert space decomposition (i.e. an orthogonal decom-
position)

L2(T) =
⊕

m∈Zn

C · χ−m

Date: October 21, 1999.
1Recall that a Lie group is a C∞ (resp. (real) analytic) manifold which is also a group, such

that the the maps (x, y) 7→ xy and x 7→ x−1 are C∞ (resp. analytic). I will only consider

compact, analytic Lie groups. The requirement of analyticity is no restriction in view of the
classical result that every C∞ Lie group has a unique real analytic structure on it compatible
with its C∞ structure.

2In general, for a compact group, a character is the trace function associated with a finite
dimensional representation. What we have called a character, is really an irreducible character of
T.

3On compact groups we have a unique measure, the Haar measure, which is invariant under
both right and left translations, and which gives the whole group measure one. If the group is in
addition a Lie group, then the measure can be represented by an analytic k-form, where k is the
dimension of the group.
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In particular, if ( , ) denotes the inner product on L2(T), then every f ∈ L2(T) has
a Fourier series expansion

f =
∑
m

f̂(m)χ−m

where

f̂(m) = (f, χ−m).

Remark 2.1. For f ∈ L2(T), the theorem also gives the Parseval equality

||f ||2 =
∑
m∈Z

|f̂(m)|2.

Note that f̂ can be thought of as a member of L2(Zn, ♯), where ♯ is the “counting

measure” on Zn. Thought of this way, the Fourier transform f 7→ f̂ becomes, via
Parseval’s relation, a unitary isomorphism between the Hilbert spaces L2(T) and
L2(Zn, ♯). Note that ♯ is “the” Haar measure on Z

n. These remarks are a special
case of Pontrayagin duality, with T and Zn being considered as abelian groups
“dual” to each other.

3. The group U(n)

Recall that a unitary matrix is a square matrix A, with entries in C, satisfying
A∗A = 1 (here, as elsewhere, A∗ is the Hilbert space adjoint, or, what amounts
to the same thing, the conjugate transpose). Such an A is also characterized by
the fact that it preseves the Hermitian inner product on Cn (assuming A to be
n×n). Let U(n) denote the group of n×n matrices. One shows, in the usual way,
that U(n) is a compact subgroup of GL(n, C)4 Consequently U(n) is a compact
Lie group, since closed subgroups of Lie groups are themselves Lie groups (see
[1], p.28,Thm. (3.11).)

Let D ⊂ U(n) be the Lie subgroup consisting of diagonal matrices, with diagonal
entries of modulus 1. Then D ∼= Tn. We claim that given g ∈ U(n), the conjugacy
class Cg of g in U(n) must intersect D. This is another way of saying that we
can find an orthonormal basis of Cn consisting entirely of eigenvectors of g. This
is clearly true for n = 1. Let V be an eigenspace of g, and W its orthogonal
complement. Then gW = W , for g preserves inner products. Moreover g acts as a
unitary operator on W . By induction on dimension, we may assume that W has
an orthonormal basis of eigenvectors of g. The space V certainly has such a basis,
and hence Cn has the required decomposition.

A little thought shows that the conjugacy class Cg meets D in a finite number
of points—in fact in at most n! points. If |Cg ∩ D| = n! we call g regular 5. If an
element of U(n) is not regular, it is called singular.

Let G denote U(n), G′ the regular locus of G, and D′ the regular elements in
D. It turns out that G′ is an open sense subset of G (and hence its complement in
G has zero Haar measure).

4The “usual way” involves showing that U(n) is closed and bounded on Cn
2

, using the fact

that norms on Cn
2

are equivalent. Since the operator norm of any unitary matrix is 1, U(n) is
bounded. The property of preserving the inner product clearly carries over to limits, whence U(n)
is closed.

5In other words, the eigenvalues of g are distinct. There are other characterisations of regular
elements of U(n). The element g is regular if and only if Cg has maximal dimension. This

characterization allows for generalization to other compact groups.
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We are interested in characterizing the (finite dimensional) irreducible represen-
tations of G = U(n). Our strategy will be to reduce it to representation theory
over D ∼= Tn, where classical Fourier theory applies. One needs to relate integrals
of class functions (i.e. functions which are constant on conjugacy classes) on G to
integrals over D. The following two results are crucial to this strategy and set the
pattern for similar results over arbitrary compact groups (see [2], pp. 26–28 and also
[1], pp. 159–163).

Lemma 3.1. For x ∈ G, t ∈ D, xtx−1 depends only on the coset xD. If Ψ(xD, t) =
xtx−1,

Ψ : G/D × D′ → G′

is an analytic map making G/D ×D′ into a (possibly disconnected) covering space
over G′ with covering degree equal to n!. Moreover, if

∆(t) =
∏

1≤i<j≤n

(ti − tj) (t = diag(t1, . . . , tn))

and dx, dt, dx̄ are the normalized invariant measures on G, D and Ḡ = G/D, then

Ψ∗(dx) = ∆∆̄dx̄dt.

Proof. Clearly (xD, t) 7→ xtx−1 is well defined. It is not hard to see that Ψ is
analytic. We now compute dΨ. To do this, one checks that one only needs to
compute dΨ(1̄,t) from the tangent space Tt at (1̄, t) ∈ G/D × D′ to the tangent
space T ′

t at t ∈ G′. Both these spaces (i.e. Tt and T ′
t ) can be identified (in a

canonical way) with

g = q ⊕ d

where q is the space of skew hermitian matrices with zeros in the diagonal, and d is
the space of diagonal matrices. We may then think of dΨ(1̄,t) as an endomorphism
of g. One checks that this endomorphism is

(Z, H) 7→ (t−1Zt − Z, H).

For u ∈ D, let A(u) be the endomorphism

Z 7→ u−1Zu − Z

of q. A little thought shows that if Ψ∗(dx) = ω(x̄, t)dx̄dt, then ω(x̄, t) = det A(t).
Going over to the complexification qC of q (note that qC consists of all complex
matrices with diagonal entries zero), and denoting by Ers (r 6= s) the matrix
(δirδjs)ij , we see that

A(t)Ers = (
ts
tr

− 1)Ers.

It follows that

detA(t) =
∏
r 6=s

(
tr
ts

− 1)

=
∏

(
tr − ts

ts
)(

t̄r − t̄s
t̄s

)

= ∆∆̄ (since |ts| = 1for all s).

It only remains to show that Ψ is a covering map with fibre cardinality n!. The
statement about the fibre cardinality is clear. To see Ψ is a covering map, note that
the map (xD, t) 7→ xtx−1 is a map between the two compact manifolds G/D × D
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and G, and hence is proper. The map Ψ is obtained by “base changing” to G′ G′,
and hence Ψ is proper. But we have shown that Ψ is a local homeomorphism. It
must be a covering map!

One immediately has (by first looking at continous f , and then using a standard
argument) the following.

Theorem 3.1. Let f ∈ L1(G). Then∫
G

fdx =
1

n!

∫
D

∫
G

f(xtx−1)∆∆̄dxdt.

In particular, if f is a “class function”, and fD its restriction to D, then∫
G

fdx =
1

n!

∫
D

fD∆∆̄dt.

4. Weyl’s Character Formula for U(n)

Before discussing the character formula for U(n), I would like to make a few
comments about compact Lie groups and their representations. The accepted rule
of the thumb is the following. Proofs of results for compact groups are often the
same as that of finite groups H , with the operator

∫
G

( )dg replacing the operator

1/|H |
∑

h∈H . Note that 1/|H |
∑

h∈H =
∫

H
( )dh. This philosophy readily gives

the following:

• All finite dimensional representations on G are equivalent to a unitary rep-
resentation. From now onwars we only deal with finite dimensional unitary
representations 6.

• Every (finite dimensional, unitary) representation breaks up into an orthogo-
nal direct sum of irreducible representations.

• For π a representation of G, let Θπ denote the associated character Θπ : G →
C, g 7→ trπ(g). Then Θπ = Θπ′ if and only if π ∼= π′, where ∼= denotes unitary
equivalence 7. We denote the unitary equivalence class of π by [π]. Thus Θπ

can with equal justice be denoted Θ[π], and we will often do this. Let

Ĝ = {[π] |πirreducible}.

• Let ( , ) denote the inner product on L2(G). Then for ω, ω′ ∈ Ĝ,

(Θω, Θω′) = δωω′ .

• If π = m1π1+m2π2+. . .+mrπr, each πi irreducible and in distinct equivalence
classes, then

||Θπ||
2 = m2

1 + . . . + m2
r.

In particular

||Θπ|| = 1 ⇔ [π] ∈ Ĝ.

6Except for a brief while in the second lecture when we discuss the Peter-Weyl Theorem and
relax the finite dimensional restriction. The representation space will be L2(G) and π will be the
“regular” representation.

7In other words if V is the space of π and V ′ that of π′, then there exists a unitary isomorphism
T : V → V ′ (or a unitary “intertwining operator”) such that π′(g)◦T = T ◦π(g), g ∈ G.
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Remark 4.1. While the above results have an easy passage from the finite groups
to compact groups, not all proofs of results about finite group representations lend
themselves to a mechanical reworking in the compact situation— in particular,
even producing a finite dimesnional representation of G requires the Peter-Weyl
theorem. For the analysis of U(n) we only need a part of the Peter-Weyl theorem,
viz. the fact the irreducible characters form an orthonormal basis of the space of
class functions in L2(G).

We now return to U(n). In what follows G will once again be the group U(n).
The symmetric group Sn will be denoted by W . W is the “Weyl group” og U(n).
For any function Φ in L2(D), and w ∈ W , let Φw denote the action of w on Φ8.

For a character χ ∈ D̂, let

χ̃ =
∑

w∈W

ǫ(w)χw

where ǫ(w) is the sign of the permutation w. Recall that D̂ ∼= Zn. Let χm1,... ,mn

denote the character associated to (m1, . . . , mn) ∈ Zn. Note that χw
m = ǫ(w)χw(m).

Lemma 4.1. Let Φ ∈ L2(D) be such that

1. Φ has a finite Fourier series expansion with integer coefficients;
2. Φ is skew symmetric, i.e.

Φw = ǫ(w)Φ (w ∈ W ).

Then Φ can be written uniquely as

Φ =
∑

m1>...>mn

c(m)χ̃m

where c(m1, . . . , mn) ∈ Z. The χ̃m occuring in the expansion are orthogonal, and

||Φ||2 = n!
∑

|c(m)|2.

Proof. Let V ⊂ L2(D) be the complex vector subspace spanned by χ̃m, m ∈ Zn.
Let

B = {χ̃m|m1 > . . . > mn}.

Then B is an orthogonal basis of V . This can be seen by checking the following

• χ̃m1,... , mn
= ǫ(w)χ̃w(m1),... , w(mn).

• χ̃m1,... , mn
= 0 if the m1, . . . , mn are not distinct (follows from above iden-

tity).
• If χ1 and χ2 belong to distinct W orbits, then (χ̃1, χ̃2) = 0.

Let Φ be as in the statement of the Lemma and let
∑

m d(m)χm be its Fourier
expansion (the d(m) are integers, and only a finite number of them are non zero).
Then n!Φ =

∑
m d(m)χ̃m. Hence Φ lies in V . If

Φ =
∑

c(m)χ̃m

is its expansion with respect to the basis B, then c(m) is the coefficient of χm in
the Fourier expansion of Φ. Hence, by hypotheses on Φ, c(m) is an integer. The
statement about the norm of Φ follows from the obvious fact that ||χ||2 = n! if
χ ∈ B.

8W acts on D by permuting the diagonal elements, and hence there is a dual action of W on
L2(D).
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Theorem 4.1. (Weyl’s character formula) The irreducible characters of U(n) are
in natural one-one correspondence with n-tuples of integers (m1, . . . , mn) with
m1 > . . . > mn. For such an (m1, . . . , mn) let Θm1,... , mn

denote the corresponding
character. Then

(Θm1,... , mn
)D = χ̃m1,... , mn

/∆.

Proof. Let π be an irreducible representation of U(n), and let Θπ be the corre-
sponding character. Let

Φπ = (Θπ)D∆.

Then Φπ satisfies the hypotheses of Lemma 4.1. Let

Φπ =
∑

c(m)χ̃m

be the expansion that Lemma4.1 guarantees. Using Theorem3.1, one sees that
||Φπ||

2 = n!. Using Lemma 4.1 once again we see that∑
|c(m)|2 = 1.

But the C(m)’s are integers. It follows that

Φπ = c(m1, . . . , mn)χ̃m1,... , mn

for some m1 > . . . > mn, with c(m1, . . . , mn) = ±1. Thus, for each [π] ∈ Ĝ,
there are integers mi(π), with m1(π) > . . . > mn(π). We have to show that
c(m1(π), . . . , mn(π)) = 1 and that every (m1, . . . , mn) with m1 > . . . mn occurs

as (m1(π), . . . , mn(π)) for some [π] ∈ Ĝ. To see the latter, let q1 > . . . qn be
integers such that q cannot be written as m(π). Then χ̃q is not equal to any χ̃m(π).
It follows that the inner product (χ̃q, χ̃m(π)) vanishes. Let ΘD be the W invariant
function χ̃q/∆. Then ΘD has a unique extension to a class function Θ on G (use

Lemma3.1). By Theorem3.1, (Θ, Θπ) = 0 for every [π] ∈ Ĝ. This contradicts the
completeness of the {Θ[π]} amongst class functions.

It remains to show that c(m1(π), . . . , mn(π)) = 1. Give Zn its lexicographic
order. Write the Fourier expansion

(Θπ)D = cχr1,... , rn
+

∑
s<r

d(s)χs.

Then c, d(s) are all positive integers. Now,

∆ = χ̃(n−1,n−2,... , 0).

Hence

Φπ = cχr1+n−1,r2+n−2,... , rn
+ . . .

where the unwritten terms are those whose suffixes are less than (r1, . . . , rn). Now
the highest index in c(m(π))χ̃m(π) is precisely (m1(π), . . . , mn(π). Hence

c(m(π)) = c, ri + n − i = mi(π), i = 1, . . . , n.

Since c > 0, c(m(π)) = 1 and we are done!

Remark 4.2. Note that in the above r1 ≥ r2 ≥ . . . ≥ rn. Further, the proof shows
that r1, . . . , rn determines m1, . . . , mn via the formulae mi = ri + n − i. Stated
another way, this says that if one knows the highest index in the Fourier expansion
of (Θπ)D, then one can recover π. This leads to:
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Theorem 4.2. (Cartan-Weyl description via highest weights). If r1, . . . , rn are
integers r1 ≥ r2, . . . ≥ rn there is (up to equivalence) a unique irreducible repre-
sentation of U(n) with highest weight χr1,... ,rn

and this weight has multiplicity 1
in the representation. Its character is Θm1,... , mn

where mi = ri + n − i and all
irreducible representations are thus obtained.
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