
SELF-INTERSECTION VIA NOETHER NORMALISATION

PRAMATHANATH SASTRY

We give a very simple geometric proof of Noether Normalisation. The proof is
less than a page (see Section 2). Using that we give another way of understanding∫
V
c1(L)d for a line bundle L on a d-dimensional projective variety V , which avoids

Bertini’s theorem (see Theorem 3.1.1). After that we discuss, essentially as an
appendix, properties of étale maps, and prove the ones we used.

In what follows k is an algebraically closed field. A variety is a finite type
separated reduced irreducible scheme over k. The symbol Pn will denote projective
space of dimension n over k. The function field of a variety V is denoted k(V ). If
V is a variety and v a point of V , then κ(v) denotes the residue field at v, i.e., the
residue field of the local ring OV,v. If v is the generic point of V then note that
κ(v) = k(V ).

1. Tangent spaces as actual spaces in projective space

1.1. Let V first be an affine variety of dimension d, say V is a closed subvariety
of AN (whose co-ordinate ring is k[X1, . . . , XN ]) and let v ∈ V be a closed non-
singular point of V . Recall that if I is the ideal of V in k[X1, . . . , XN ] then the
tangent space of V at v has traditionally been regarded as a linear subvariety of
AN , given by A+ v where A defined by the equations:

(1.1.1)

N∑
i=1

∂f

∂Xi
(v)Xi = 0, f ∈ I.

Inspite of appearances, the above is a finite set of conditions, for the f can be made
to vary over any finite set of generators of I to give A. In other words, if f1, . . . , fr
are generators of I, then our tangent space Tv of V at v is given by

(1.1.2)

N∑
i=1

∂fj
∂Xi

(v)Xi =

N∑
i=1

∂fj
∂Xi

(v)Xi(v), j = 1, . . . , r.

Smoothness (non-singularity) of V at v ensures that Tv so defined is of dimension

d, for the rank of the matrix (
∂fj
∂Xi

(v))ij is then N − d.

Next if V is projective, say V ↪→ PN , and v is a non-singular point of V , then
picking a hyperplane H in PN which does not contain v and removing H and we
are back to the situation of the last paragraph. Thus we have a linear space Tv in
PN rH = AN . This can be completed within PN to give a linear subspace Pv ∼= Pd
of PN . We call Pv the projective tangent space at v of V in PN .
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2. Projective Noether Normalisation

2.1. The main result is that a projective variety of dimension d has a finite map to
Pd. There are some bells and whistles we add which are useful for the intersection
theory part later.

Theorem 2.1.1. Let V be a projective variety over k with dim V = d and let
v ∈ V a closed non-singular point of V . Then there exists a finite map

h : V → Pd

which is étale at v.

Remark: A map is finite if it is proper and all its fibres are finite. As for the notion
of étale, for our purposes the following definition of étale suffices for most situations.
A map of varieties f : V → W is étale at a closed point v ∈ V if the induced map
of complete local rings (with w = f(v))

ÔW,w → ÔV,v

is an isomorphism. If v ∈ V is non-singular, this is equivalent to saying that the
resulting map of tangent spaces Tv → Tw is an isomorphism. The étale locus of f is
open in V . More precisely the set of closed points on which f is étale together with
all the generalisations of these points is an open subset of V . For a more detailed
discussion and some proofs see Section 4 below.

Proof. The case d = 0 is trivial. So we assume d ≥ 1. Pick an embedding V ↪→
PN of V . One checks that most linear subvarieties of PN (i.e., intersections of
hyperplanes in PN ) of dimension N − d − 1 do not meet V . Pick one, call it L,
which does not meet the (projective) tangent space P of V at v either. Check that
such an L exists. Note that L can be identified with PN−d−1 and P with Pd.

If S is a linear subspace of PN of dimension N−d containing L then every positive
dimensional subvariety of S must meet L. Indeed, since S = PN−d every positive
dimensional subvariety W of it must meet the very ample divisor L, otherwise, one
has OS(L)|W is very ample as well as trivial, contradicting the fact that dimW > 0.

Now pick a closed point x ∈ PN r L. There is exactly one linear subvariety Sx
of PN of dimension N − d which contains x and L (namely the union of all lines
passing through x which intersect L). Since Sx contains L it cannot contain P from
our argument in the previous paragraph (since dimP = d ≥ 1 and P ∩ L = ∅). It
follows that P meets Sx in exactly one point which we denote g(x). It is well-known
and easy to see that the map

PN r L→ P

x 7→ g(x)

is a map of varieties. In fact, if we take a hyperplane H containing L then on the
affine space AN = PN rH, the map g can be identified with the usual projection
AN → Ad. Varying H, we can cover PN r L. We set h = g|V . More pedantically,
the map

h : V → P

is defined as the composite V ↪→ PN r L
g−→ P .

Clearly for p ∈ P , g−1(p) = SprL. Thus h−1(p) = Sp∩V , since V does not meet
L. Now h−1(p) does not meet L (since V does not) and hence h−1(p) is finite from
the argument we gave above (namely that every positive dimensional subvariety of
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Sp must meet L). A map between projective varieties is always proper, and hence
if it has finite fibres it must be a finite map. Thus h is a finite map. We make the
identification P = Pd. It is clear that the tangent space of v ∈ V (namely an affine
part of P ) is isomorphic to the tangent space of P at h(v) = v, which again is an
affine part of P , under the map induced by h. Hence h is étale at v. �

Remarks 2.1.2. 1) The affine case (done in commutative algebra classes) is an easy
consequence. Indeed, if Y is an affine variety of dimension d, it can be embedded
in AN for suitable N . Since k is perfect (it is algebraically closed!), the smooth
locus of Y is non-empty. Pick a closed point v ∈ Y which is non-singular (i.e.,
v is a smooth point of Y ). Let V be the projective completion of Y in PN . We
have a finite map h : V → Pd = P from the above proof, where P is the projective
tangent space to v ∈ V . The hyperplane at infinity H∞ in PN intersects P = Pd
in a hyperplane of Pd and it is clear that for the map g : PN r L → P , fibres of g
over H∞ ∩P lie in H∞rL. In particular h−1(P rH∞) = Y . Note P rH∞ = Ad.
Thus we get a finite map

g : Y → Ad

which is étale at v. The last bit (g being étale at v) is a bonus which you don’t see
in most commutative algebra books.

2) The map h in the theorem is necessarily surjective since it is a finite map be-
tween varieties of the same dimension. In greater detail since h is finite dimh(V ) =
dimV . On the other h(V ) is closed in Pd. Since dimh(V ) = d = dimPd we
conclude that h(V ) = Pd.

3. The integer
∫
V
c1(L)dim (V ) when L is ample

3.1. Suppose V is a projective variety of dimension d and L is an ample line bundle
on it. We wish to show that

∫
V
c1(L)d is a positive integer. As was pointed out

in class, we may, without loss of generality assume L is very ample. Suppose
dim Hd(V, L) = N + 1. Then L induces an embedding V ↪→ PN and the restriction
of OPN (1) to V is L. Let D be an effective Cartier divisor on V in the linear system
determined by L. In plain terms, let D = H ∩ V where H is a hyperplane in PN ,
where the scheme structure on D is determined by its ideal sheaf ID = IV + IH

in OPN , where IV and IH are the ideal sheaves of V and H. Note that
∫
V
Dd =∫

V
D1 · . . . · Dd where Di are effective Cartier divisors each of them hyperplane

sections of hyperplanes in PN . By Noether normalisation we have a finite map,
generically étale (since étale is an open condition)

h : V → Pd

where the target space Pd can in fact be regarded as a subspace of PN . In fact,
from the proof of Noether normalisation, if p ∈ Pd then h−1(p) = Sp ∩ V where Sp
is a linear sub-variety of PN of dimension N−d. Now the étale locus U of h is open
(see Remark after the statement of Theorem 2.1.1 above or Subsection 4.3 below).
Let Z be the complement of U . Since h is a proper map therefore F = h(Z) is
closed in Pd. Now dimZ < d and hence dimF < d. Let W be the complement of
F in Pd. It is non-empty (for dimF < d) and

h−1(W )
via h−−−→W

is finite and étale. Let p ∈W be any point. Since h is étale on each point of h−1(p),
each of these points is a smooth (i.e., non-singular) point of V (look at completions
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at the various local rings and the definition of étale). On the other hand, using
the notation in the proof of Noether normalisation, h−1(p) = Sp ∩ V where Sp is
a linear subspace of PN of dimension N − d. Basic projective geometry tells us
that Sp = H1 ∩ · · · ∩Hd where the Hi are hyperplanes in PN . If Di = Hi ∩ V for
i = 1, . . . , d then

h−1(p) = D1 ∩ · · · ∩Dd.

In particular the intersection D1 ∩ · · · ∩ Dd is a finite collection of smooth points
of V . Thus

∫
V
c1(L)d = #(D1 ∩ · · · ∩Dd) > 0. We point out that we have already

seen in 2) of Remarks 2.1.2 that h is surjective, so these fibres are non-empty.
In summary, we have the following (and where we remind ourselves that the

scheme theoretic intersection of two or more closed subschemes is the one whose
ideal sheaf is the sum of the various ideal sheaves of the closed subschemes and that
the empty scheme is not zero-dimensional):

Theorem 3.1.1. Let L be very ample on a d-dimensional projective variety V .
Then we can find effective Cartier divisors D1, . . . , Dd in the linear system deter-
mined by L such that the scheme theoretic intersection D1 ∩ · · · ∩ Dd is smooth,
zero-dimensional, and lies in the smooth locus of V . In particular

∫
V
c1(L)d > 0

for L ample, since it is so for L very ample.

4. More on étale maps and tangent spaces

4.1. Intrinsic and extrinsic tangent spaces. Suppose Y ↪→ AN is a closed
immersion with Y a d-dimensional variety and v a closed non-singular point of Y .
Let M be the maximal ideal of k[X] = k[X1, . . . , XN ] which defines the point v.
The cotangent space of AN at v is (as is well-known) defined to be M/M2. For
f ∈ k[X] we write df |v, or simply df if it is understood that our calculations are
at v, for the image of f − f(v) in M/M2. We know from Taylor’s expansion that

f = f(v) +

N∑
i=1

∂f

∂Xi
(v)(Xi −Xi(v)) + Φ

where Φ ∈M2. It follows that df =
∑N
i=1

∂f
∂Xi

(v)dXi.

Suppose I is the ideal of k[X] which defines Y . Let m be the maximal ideal of
the co-ordinate ring A = k[X]/I of Y . As is well-known the cotangent space of Y
at v is then m/m2. For ϕ ∈ A let δϕ|v, or simply δϕ when it is clear we are working
at v, be the image of ϕ − ϕ(v) in m/m2. For f ∈ k[X] write f̄ for its image in A.
Then we have a map (clearly surjective)

(4.1.1) M/M2 −→ m/m2

given by df 7→ δf̄ . If f ∈ I then f̄ = 0 whence δf̄ = 0. Thus the subspace N ∗ of
M/M2 given by N ∗ = {df | f ∈ I} lies in the kernel of the surjective map (4.1.1).
It is in fact exactly the kernel as the following argument shows. First suppose
f = (f1, . . . , fr) generates the ideal I. If f =

∑r
i=1 aifi, with ai ∈ k[X], then as

fi(v) = 0 we have

df =

r∑
i=1

ai(v)dfi +

r∑
i=1

fi(v)dai =

r∑
i=1

ai(v)dfi.

Hence N ∗ is spanned by the vectors dfj =
∑N
i=1

∂fj
∂Xi

(v)dXi, j = 1, . . . , r. Since

v is a non-singular point of Y , the rank of the matrix (
∂fj
∂Xi

(v))i,j is N − d (see [H,
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p. 31]). Moreover {dXi}Ni=1 is a basis for M/M2 (as is easy to see). Thus

dim N ∗ = N − d.

On the other hand, since OY,v = Am is a regular local ring of Krull dimension d [H,
p. 32, Theorem 5.1], dimk m/m

2 = d. In fact, if t1, . . . , td is a system of parameters
for Am, and regarding ti as elements of A (by shrinking Y around v if necessary),
then {δti}di=1, is a basis of m/m2. It follows that N ∗ is indeed the kernel of (4.1.1).
We thus have an exact sequence of finite dimensional k-vector spaces

0 −→ N∗ −→M/M2 −→ m/m2 −→ 0.

Writing N for the dual of N ∗ we get an exact sequence

0 −→ T −→ T̂ −→ N −→ 0

where T and T̂ are the (intrinsic) tangent spaces of Y and PN at v respectively.

Let ∂
∂Xi

, (or more precisely ∂
∂Xi
|v ), i = 1, . . . , N be the basis of T̂ dual to the

basis dXj , j = 1, . . . , N . From the description of N ∗ and N , it is clear that

T = {
N∑
i=1

ai
∂

∂Xi
| ai ∈ k and

N∑
i=1

ai
∂fj
∂Xi

(v) = 0 for j = 1, . . . , r}.

In other words T is determined by

a =

a1
...
aN

 ∈ kN
such that a satisfies (1.1.1). This gives the connection with the embedded tangent
space we discussed in Section 1.

4.2. Étale maps and tangent spaces. Suppose h : V → W is étale at v ∈ V
and v is a smooth closed point of V . According to the definition we have given, this
means the completions of the local rings at v and w are the same. If m and n are the
maximal ideals of local rings at v and w respetively, it follows that n/n2 → m/m2 is
an isomorphism (we are dealing with two isomorphic power series rings, where the
analytic variables correspond to each other under the isomorphism). This means
the map at the level of tangent spaces is an isomorphism. Conversely, since we
are dealing with regular local rings, if the tangent spaces are isomorphic under the
natural map, then so are the co-tangent spaces n/n2 and m/m2. If t = (t1, . . . , td)
is a regular system of parameters for OW,w, then the basis ti + n2, i = 1, . . . , d of
n/n2 maps to a basis of m/m2. It follows that the images tsi of the ti are a regular

system of parameters for OV,v, whence the map k|t1, . . . , td|] = ÔW,w → ÔV,v =
k[|s1, . . . , sd|] is an isomorphism.

4.3. Étale locus is open. Let g : Y → Ad be the affine Noether Normalisation
discussed in 1) of Remarks 2.1.2. From the proof there, we have a commutative
diagram

Y �
� //

g   B
BB

BB
BB

B AN

natural projection
��

Ad
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with the hooked arrow being a closed immersion. In terms of co-ordinate rings, the
downward vertical arrow is the one induced by the natural inclusion k[X1, . . . , Xd]→
k[X1, . . . , Xd, . . . , XN ]. Since Ad is smooth over k, the étale locus U of g is in the

smooth locus of Y . Indeed if v ∈ U , and p = g(v), then ÔU,v = ÔAd,p and the latter

is a regular local ring. With this v and p let T and T̂ be as in Subsection 4.1, and
let T ′ be the tangent space of Ad at p. The natural map T → T ′ is seen to be the
composite

T ↪→ T̂
π−→ T ′

where π is the map which dXi 7→ dXi for i = 1, . . . , d and dXi 7→ 0 for i > d.

The image of T in T ′ is clearly the linear span of the vectors
∑
i = 1d

∂fj
∂Xi

(v),

j = 1, . . . , r. Thus T → T ′ is an isomorphism if and only if

rk


∂f1
∂X1

(v) · · · ∂f1
∂Xd

(v)
...

...
∂fr
∂X1

(v) · · · ∂fr
∂Xd

(v)

 = d

It follows that the non-étale locus of g is precisely the locus where the d×d minors
of the matrix 

∂f1
∂X1

· · · ∂f1
∂Xd

...
...

∂fr
∂X1

· · · ∂fr
∂Xd


vanish. This is a closed subscheme of Y , and hence the étale locus is open.

4.4. Generalities. The following is not really needed for the proof of Theo-
rem 2.1.1 or Theorem 3.1.1. I have brought it up to help you with read more
from any of the numerous excellent books on the topic. Let h : V → W be a map
of varieties, v a closed point of V and w = f(v). It is not hard to show that f is
étale at v if and only if the following three conditions are satisfied.

(a) OV,v is flat over OW,w,
(b) the point v is isolated in the fibre h−1(w) = V ×W Specκ(w); and,
(c) κ(w)→ κ(v) is separable.

It is not hard to show that in this case, since v is isolated in its fibre over w, there
is an open neighbourhood U of v in V such that the map U → W induced by h
has finite fibres (i.e., U → W is quasi-finite). The advantage of the necessary and
sufficient conditions (a)—(c) is that we can generalise the notion of being étale at v
to the case where v is not necessarily closed in V . Thus in this case one can define
h to be étale at v if conditions (a)—(c) are satisfied. One checks that the étale
locus is an open locus. Note that h is étale at the generic point of V if and only if
the image of the generic point of V is the generic point of W and k(W )→ k(V ) is
separable.
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