
DEGREE OF A LINE BUNDLE AND HYPERPLANE

INTERSECTIONS

PRAMATHANATH SASTRY

Throughout k is an algebraically closed field, and C an integral1 projective curve
over k. The curve C could be singular. For a k-vector space V , V ∗ will denote its
dual. A divisor on a k-variety will mean a Cartier divisor, i.e., a Weil divisor which
is locally principal. On a scheme Z (not necessarily a k-scheme) an effective divisor
will mean an effective Cartier divisor, i.e., a closed subscheme D of Z such that the
ideal sheaf Z is invertible (i.e., a line bundle). We denote the ideal sheaf of such a
D by OZ(−D) or simply O(−D).

The idea is to define the degree of a line bundle on a possibly singular curve C
and understand hyperplane intersections of an embedding of such a curve into a
projective space. The proof of the main result, namely Theorem 1.1.1 is quite short.
Just two pages in Section 2. Setting the context and general remarks giving links
to other aspects (e.g. Bezout’s theorem) take up a little space before the proof. We
follow this with a long appendix which is not really necessary for the main goal. It
gives the link between the very straightforward ideas in the proof of Theorem 1.1.1
and Grothendieck’s beautiful construction of the relative Picard scheme.

In keeping with the conventions of the course, for a vector-bundle E on a scheme
Y , P(E ) will denote the classifiying space for line-bundle quotients of E . Equiva-
lently, P(E ) is the space of sub-bundles F of E such that rank F = rank E − 1.

If L is line bundle on a scheme Y , and s a global section of L , then Z(s)
will denote the zero-scheme of s. Note that Z(s) is a closed subscheme of Y . If
L is trivial, then s can be identified, via an isomorphism L ∼= OY , with a global
section of OY , whence we have an ideal sheaf I := sOY of OY , and Z(s) is the closed
subscheme given by I . The ideal I does not depend on the chosen trivialisation as
is easy to verify. Since L is locally trivial, Z(s) can be defined on open sunschemes
where L is trivial, and these locally closed subschemes patch. Equivalently, the
global section gives us a map OY → L , whence a map L −1 → OY . Then I is the
image of L −1 in OY .

1. The space of hyperplane intersections

1.1. Aim. Suppose L is a very ample line bundle on C and C ↪→ PN the projective
embedding given by L . We wish to show that for any hyperplane H of PN , the
scheme C ∩H is finite over k and if AH is the co-ordinate ring of this finite scheme
(so that dimk AH < ∞), then dimk AH is independent of H. As is well known
(see below for a slightly fuller discussion), C ∩H is also the zero scheme Z(s) of a
non-zero section s (determined uniquely up to a non-zero scalar multiple by H) of
L . In other words, the number of zeros of s counted properly does not depend on
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the non-zero section s. Equivalently, the number of points of intersection of H and
C counted properly is independent of H. This number is then clearly an invariant
of L, and since by Bertini’s theorem we can find an H which avoids the singular
points of C and such that the points of the hyperplane section of C by H occur
with multiplicity one, this is the what is classically called the degree of C (in the
projective space it has been embedded into by L). It is natural to call it the degree
of L. In formal terms

Theorem 1.1.1. Let L be a very ample line bundle on C and C ↪→ PN the
resulting closed immersion given by the complete linear system |L |. If H is a
hyperplane in PN , then the scheme C ∩ H is a finite k-scheme and the integer
dimk AH does not depend upon H, where AH = Γ(C ∩H, OC∩H). Equivalently, if
s is a non-zero section of L , then the the zero scheme of s, Z(s), is a finite scheme
over k, and dimk Γ(Z(s), OZ(s)) does not depend upon the non-zero section s.

1.2. Consequences. Using Theorem 1.1.1 we can define the degree of a line bundle
on C, even when C is not smooth. When L is very ample, one defines degL =
dimk Γ(Z(s), OZ(s)) for a non-zero section s of L. This is well-defined according
to the theorem. Moreover if M and Q are two very ample bundles on C, then it
is easy to see that deg (M ⊗Q) = deg (M) + deg (Q). In general, when L is not
necessarily very ample, one can always write L ∼= M ⊗OC

N−1 where M and N are
very ample. (For example, if A is very ample, then so is every tensor power of A ,
and for n� 0, L⊗A n is very ample. Set M = L⊗A n and N = A n.)

Definition 1.2.1. Let L be a line bundle on C. The degree of L, deg (L) is defined
by the formula deg (L) = deg (M) − deg (N) where L ∼= M ⊗OC

N−1 with M and
N very ample on C.

The degree of L is well defined, for if L ∼= P ⊗ Q−1 as another decomposition
with P and Q very ample, then M ⊗ Q ∼= P ⊗ N . Thus deg (M) + deg (Q) =
deg (P ) + deg (N) and it follows that deg (L) is well-defined.

Another obvious consequence is this:

Proposition 1.2.2. Let X be a smooth projective surface, C and D be distinct
curves on X, sharing no irreducible component, such that C is integral and D is
a very ample divisor. Let L = O(D)|C . If Z = C ∩ D is the scheme-theoretic
intersection of C and D (necessarily zero-dimensional and hence affine) and A =
Γ(Z, OZ) so that Z = SpecA, then dimk A = deg (L). In particular, if C and D
intersect transversally, then

#(C ∩D) = deg (L).

Proof. This follows from the fact that if i : C ↪→ X is the natural inclusion, then
i−1(D) = Z, whence OX(D)|C = OC(Z), i.e. L = OC(Z). If s is the canonical
section of OC(Z), i.e., the section corresponding to 1 ∈ k(C), then Z = Z(s) and
hence we are done. �

Remark 1.2.3. Note that we did not require D to be integral. As an exercise,
prove Bezout’s theorem for projective plane curves using Proposition 1.2.2.

1.3. Basics recalled. Suppose L is a very ample line bundle on it. Let V =
Γ(C, L ), P = P(V ∗), the projective space of hyperplanes through the origin in
V ∗, and P∗ = P(V ) the dual projective space to P, namely the projective space
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of hyperplanes in V . Note that points on P can be regarded as lines through the
origin in V and points on P∗ as lines through the origin in V ∗.

The space P has another well-known interpretation. It is the complete linear
system associated to L, i.e., its k-rational points “are” the effective divisors D on
C such that O(D) ∼= L . Indeed, given such a point p ∈ P, it represents a one-
dimensional subspace Lp of V , and if s is a non-zero vector in Lp ⊂ Γ(C, L ), the
zero scheme of s, Z(s), does not depend on the choice of s, and is an effective divisor
in C. Conversely, if D is an effective divisor such that O(D) ∼= L, then there is a
non-zero section s of L, corresponding to the non-zero section 1 ∈ Γ(C, O(D)), such
that Z(s) = D. The section s, being non-zero, defines a one-dimensional subspace
L of V , whence a point of P. The two processes are easily seen to be inverses of
each other. (See also [H, p. 145, Proposition 6.15] and note that C is an integral
scheme.)

Since L is very ample on C, it gives rise to an embedding C ↪→ P∗. Since a
hyperplane H in P∗ is the same as a point p in P, such a hyperplane gives rise to an
effective divisor DH in C in the linear system determined by L . It is well-known,
and easy to see that DH = H ∩ C, where the right side is the scheme theoretic
intersection of H with C. Note that this shows that C does not lie entirely in
any hyperplace H of P∗ and that every effective divisor D in the complete linear
system given by L is obtained by intersecting C with a hyperplane H in P∗, with
H uniquely determined by D.

1.4. The main idea of proof of Theorem 1.1.1. The idea is to make the cor-
respondence above—between effective divisors in the complete linear system |L |
and k-rational points in P—more geometric. There are other ways of proving The-
orem 1.1.1 but I am taking this route because it is a kinder gentler introduction
to one of the main ideas behind Grothendieck’s construction of the Picard scheme.
As before L is very ample on C, and V , P, P∗ are as above.

We will show that there exists a commutative diagram of schemes

(1.4.1) D

q

((PP
PPP

PPP
PPP

PPP
P
� � i // C ×k P

π

��
P

with i a closed immersion, q finite and flat, and π the usual projection, such that
if p ∈ P is a closed point (so that the residue field at p, k(p), is k), and H is
the corresponding hyperplane in P∗, then q−1(p) ↪→ π−1(p) = C is the divisor
DH = H ∩ C. In fact, (P, D) enjoys a universal property, where essentially the k-
valued point p in the above discussion can be replaced by a T -valued point of P, for a
k-scheme T . We will say more on that later. However note that our aim is achieved
if we can indeed find D embedded in a diagram such as the above. Indeed, since
D→ P is finite and flat, it is affine, and over an affine open suscheme U = SpecA
of P, q−1(U) = SpecB. B is therefore a finite flat A-algebra, in particular it is
a projective A-module. Since U is connected, this means dimk(p)(B ⊗A k(p)) is
constant as p varies over the prime ideals of A. If p is a maximal ideal, and H the
hyperplane in P∗ correspondingto the closed point p of P, then B ⊗A k(p) = AH ,
where AH is as in Subsection 1.1. Thus dimk AH = dimk(p)AH does not depend
on H.
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We now discuss the universal property alluded to above. First, for any k-scheme
W , write CW for C ×k W . If W = SpecA, then we will often write CA instead of
CW . Write LW for the pull-back of L to CW , and when W = SpecA, LA := LW .
Now suppose W is a k-scheme and D is an effective divisor on CW such that the
induced map qW : D →W is flat, and such that O(D) ∼= LW . Then there exists a
unique map γ : W → P such that

(1× γ)−1(D) = D .

However, note that the universal property is not essential for the proof of Theo-
rem 1.1.1.

2. Construction of D

Throughout L is a very ample line bundle on C and the notations are as above.

2.1. We have the following cartesian diagram

(2.1.1) C ×k P

�π

��

$ // C

v

��
P

u
// Spec k

where u and v are the structural morphisms, and π and $ the projections. Since
u and v are flat, the flat base change theorem tells us that

(2.1.2) u∗v∗G = π∗$
∗G

for a quasi-coherent OC-modules G . Applying (2.1.2) to G = L we see that

(2.1.3) V ⊗k OP = π∗$
∗L .

Consider the universal exact sequence 0→ K → V ∗⊗k OP → O(1)→ 0. Dualizing
we get an exact sequence of vector bundles (with Q = K∨)

(2.1.4) 0 −→ O(−1)
σ−→ V ⊗k OP −→ Q −→ 0.

Since V ⊗k OP = π∗$
∗L , the map σ can be re-written as

σ : O(−1)→ π∗$
∗L .

Since π∗ is right adjoint to π∗ this induces a map of line bundles on C ×k P step-
counterthm

(2.1.4) s : π∗O(−1)→ $∗L

whence a non-zero section (also denoted s) of $∗L ⊗ π∗O(1). To cut a long story
short, our scheme D is the effective divisor on C ×k P defined by this section, i.e.,

(2.1.5) D = Z(s).

It remains to show (a) the flatness of D over P, (b) that fibre of D→ P over a closed
point p ∈ P is C ∩H where H is the hyperplane in P∗ corresponding to p, and (c)
the universal property of (P, D). We will show (a) and (b) in the next sub-section.
This will finish the proof Theorem 1.1.1. We prove (c) in the appendix.
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2.2. Proof of Theorem 1.1.1. Let D be as in (2.1.5). Let i : D ↪→ CP be the
obvious closed immersion, and q : D → P the composite q = π ◦ i. We first show
that q is flat. For this we need make a few observations. First, recall that by the
local flatness criterion [M, Thm. 22.3, p.174] or [SGA1, Thm. 5.6, p.98], if (A, m)
and (B, n) are noetherian local rings, A → B a local map (i.e., the image of m in
B is contained in n), and M is a finitely generated B-module, then M is flat over

A if TorA1 (k, M) = 0, where k = A/m. The second useful observation is this. If A
is an integral domain and ϕ : A → A an A-module map, then ϕ is injective unless
it is zero. Indeed ϕ is given by a 7→ ϕ(1)a, and the assertion follows since A is a
domain. We have the following immediate consequence. Suppose Z is an integral
scheme and ϕ : L1 → L2 is an OZ-module map between two invertible sheaves,
then ϕ is injective if ϕ 6= 0.

By definition of D as Z(s), where s is as in (2.1.4), and the above observation
concerning maps between invertible sheaves on integral schemes, we have an exact
sequence2

(2.2.1) 0 −→ π∗O(−1)
s−→ LP −→ LP|D −→ 0.

Let p ∈ P. Consider the composite diagram of cartesian squares

Ck(p)

v′

��

β //

�

CP

π

��
�

$ // C

v

��
Spec k(p)

α
// P

u
// Spec k

where α is the natural map (i.e., α is “equal” to p), v′ is the structural map, and
β the base change of α. Now β∗LP = β∗$∗L = ($ ◦β)∗L = Lk(p), and since
k → k(p) is flat (i.e., u ◦α is flat), we get π′∗β

∗LP = π′∗Lk(p) = V ⊗k k(p).

Now, the universal exact sequence 0 −→ O(−1)
σ−→ V ⊗k OP −→ Q −→ 0 on P

splits Zariksi locally, since Q is a vector-bundle. It follows that for any p ∈ P we
get the induced exact sequence

0 −→ k(p)
σ⊗k(p)−−−−−→ V ⊗k k(p) −→ Q⊗k k(p) −→ 0.

Since V ⊗k k(p) = π′∗β
∗LP = π′∗Lk(p) = Γ(Ck(p), Lk(p)), σ⊗k(p) gives a section s′

of Lk(p), and a little thought shows that s′ = s|Ck(p)
. Moreover, since σ⊗k(p) 6= 0,

therefore s′ 6= 0. Since Ck(p) is an integral curve and s′ 6= 0, on tensoring (2.2.1)
with OCk(p)

we get an exact sequence

(2.2.2) 0 −→ OCk(p)

s′−→ Lk(p) −→ Lk(p)|D∩Ck(p)
−→ 0.

Now suppose x ∈ D and π(x) = p. Let A = OP, p, and B = OD,x. From (2.2.1)

and (2.2.2) we see that TorA1 (k(p), (LP|D)x) = 0. Since (LP|D)x ∼= B, this means

2There is a work-around which avoids the use of the fact that CP is integral in showing (2.2.1)
is exact. It is certainly exact without the zero on the left. The way around this is the following.
Note that the sequence (2.2.2) is exact because Ck(p) is integral and s′ 6= 0. Now check that if

A → B is a flat local homomorphism of local rings, k = A/mA, and b ∈ B an element such that
the image of b in B/mAB is a non-zero divisor in B/mAB , then b is a non-zero divisor in B. A few

pointers may help, let I = (b). Then B
b−→ B factors through I. Check that (a) (B � I)⊗A k is an

isomorphism and (b) TorA1 (k,B/I) = 0. By the local criterion for flatness, from (b) conclude that

B/I is A-flat. Show that the if J = ker (B → I), then J ⊗A k = 0. Conclude that J/mBJ = 0,

whence J = 0, and B → I is an isomorphism.
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that TorA1 (k(p), B) = 0, and by the local flatness criterion we conclude that B is
flat over A. Since x ∈ D was arbitrary, this means D is flat over P.

Suppose p is a closed point of P so that k = k(p) and Ck(p) = C, Lk(p) = L
etc. Let s′ be as above, i.e. s′ arises from σ ⊗ k(p). Then s′ ∈ Γ(CL ) = V .
Since s′ 6= 0, it determines a line in V , and it is clear that this line corresponds
to the point p, if we regard P = P(V ∗) as the space of lines through the origin in
V . This means Z(s′) = C ∩H where H is the hyperplane in P∗ corresponding to
p ∈ P. On the other hand, by definition of D as Z(s), we have q−1(p) = Z(s′).
Thus q−1(p) = C ∩H.

Remark 2.2.3. Everything we did above goes through if instead of the assumption
that L is very ample, we instead make the weaker assumption that the complete
linear system |L | is base point free, i.e., that L is generated by global sections.
Then we have a map ϕ : C → P∗ and a closed point p on P has two interpretations.
The first is as a member D of |L | and the second is as a hyperplane H in P∗. Then
the divisor D we constructed on CP remains flat over P via q : D→ P. Then with
p, D and H as the entities just introduced, we have D = q−1(p) = ϕ−1(H). I will
leave it to you to formulate the appropriate universal property. The proof of the
universal property for this case is no different from the one offered below for L
very ample.

Appendix A. Proof of the Universal Property

A.1. The basic property we need is the following. Suppose S is a k-scheme and
K a line bundle on S (the example to keep in mind is S = P and K = O(−1)).
Let πS : CS → S be the projection. Then the natural map from K to (πS)∗π

∗
SK

is an isomorphism:

(A.1.1) K −→∼ (πS)∗π
∗
SK

We prove these statements later. The main hypotheses which make the assertion
true are that CS is flat over S, and all the fibres of πS are geometrically integral.
Moreover the isomorphism (A.1.1) is “universal”. In greater detail, if g : T → S
is a map of k-schemes, and gT : CT → CS the induced map, then the base change
map from g∗(πS)∗π

∗
SK to (πT )∗g

∗
Tπ
∗
SK is an isomorphism

(A.1.2) g∗(πS)∗π
∗
SK −→∼ (πT )∗g

∗
Tπ
∗
SK

and fits into the following commutative diagram

(A.1.3)

g∗K ˜
g∗(A.1.1)

//˜

(A.1.1)

��

g∗(πS)∗π
∗
SK˜

(A.1.2)

��
(πT )∗π

∗
T g
∗K (πT )∗g

∗
Tπ
∗
SK

In fact (A.1.2) follows from (and is equivalent to) the following functorial isomor-
phism for quasi-coherent OW -modules G

(A.1.4) (πS∗π
∗
SK )⊗OS

G −→∼ πS∗(π
∗
SK ⊗OCS

π∗SG ).

One consequence all this is that the natural map from HomCS
(π∗SK , LS) to

HomS(πS∗π
∗
SK , πS∗LS) given by ϕ 7→ πS∗ϕ is an isomorphism. This is so because
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(A.1.1) gives us an isomorphism HomS(πS∗π
∗
SK , π′∗LS) −→∼ HomS(K , πS∗LS)

and the composite

HomCS
(π∗SK , LS)

natural−−−−→ HomS(πS∗π
∗
SK , πS∗LS) −→∼ HomS(K , πS∗LS)

is the usual adjoint isomorphism HomCS
(π∗SK , LS) −→∼ HomS(K , πS∗LS). We

record this:

(A.1.5) HomCS
(π∗SK , LS) ˜−−−−→

natural
HomS(πS∗πS

∗K , πS∗LS).

We will prove (A.1.1), (A.1.4) (whence (A.1.2)) and the commutativity of (A.1.3)
later. As for (A.1.2), note that the base-change map is well defined, and therefore
to show it is an isomorphism we may assume S and T are affine. Setting G = g∗OT
in (A.1.4) one sees easily that base change map in (A.1.2) is an isomorphism if
(A.1.4) is an isomorphism for all quasi-coherent G .

A.2. So suppose we have a commutative diagram of k-schemes

D

q
W

''OO
OOO

OOO
OOO

OO
� � j // CW

πW

��
W

with qW flat and D an effective divisor in CW (and j the natural inclusion of a
closed subscheme) such that O(D) ∼= LW ⊗ πW ∗M where M is a line bundle on
W . With K := M−1 we have an exact sequence

(∗) 0 −→ πW
∗K

α−→ LW −→ LW |D −→ 0,

since O(−D) is the ideal sheaf of D . Since D is flat over W , the sequence

(∗∗) 0 −→ π∗WK ⊗ π∗WG
α⊗π∗W G−−−−−→ LW ⊗ π∗WG −→ (LW |D)⊗ π∗WG −→ 0.

is exact for every quasi-coherent OW -module G . If we regard α as a section of
LW ⊗ π∗WM , then

D = Z(α).

Taking direct image and using (A.1.1) we get an injective map of OW -modules

σW : K ↪→ V ⊗k OW .

We claim that in fact sW identifies K as a sub-bundle of V ⊗k OW . To that end
let w ∈W . Applying (∗∗) to G = k(w) we get an exact sequence

(†) 0 −→ π∗k(w)(K ⊗ k(w))
αw−−→ Lk(w) −→ Lk(w)|D∩Ck(w)

−→ 0.

where πk(w) := πSpec k(w). Taking global sections and using (A.1.1) for K ⊗ k(w)
on Spec k(w) we get an injective map

σw : K ⊗ k(w) ↪→ V ⊗k k(w).

It is easy to verify that σw = σW ⊗ k(w). Thus σW ⊗ k(w) is an injective map for

every w in W . This means that if QW = coker (α), then TorOW
1 (QW , k(w)) = 0

for all w ∈W . Since QW is coherent, the vanishing of the Tor-modules means (via
Nakayama) that QW is a flat OW -module, whence a vector bundle. It follows that
K is a sub-bundle of V ⊗k OW via σW .
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From the universal property of the exact sequence (2.1.4) we get a unique map
γ : W → P such that there there is an isomorphism

θ : γ∗O(−1) −→∼ K

fitting into a commutative diagram

(A.2.1)

γ∗O(−1)
γ∗σ //˜

��

γ∗(V ⊗k OP)

K
σW

// V ⊗k OW

The above diagram can be expanded. Let γ̃ = 1× γ. Let s be as in (2.2.1), i.e., s
is the section of O(1) ⊗LP such that D = Z(s). Then the commutative diagram
(A.2.1) can be expanded to the diagram

γ∗O(−1)
γ∗(A.1.1)

˜ // γ∗π∗π∗O(−1)
via s //

♠

˜
��

γ∗π∗LP˜

��

˜ // γ∗(V ⊗k OP)

γ∗O(−1) πS∗γ̃
∗π∗O(−1)

via s //

♣

πS∗γ̃
∗LP

γ∗O(−1)
(A.1.1)
˜ //˜

θ

��

πS∗π
∗
Sγ
∗O(−1)˜
via θ

��
K

(A.1.1)
˜ // πS∗π

∗
SK

via α
// πS∗LS ˜ // V ⊗k OW

Here the downward arrows in the sub-rectangle ♠ are the ones arising from the
natural transformation γ∗π∗ → πS∗γ̃

∗ with the arrow on the left being an isomor-
phism by virtue of (A.1.2). It follows that ♠ commutes. The sub-rectangle on
the top left commutes by (A.1.3). The natural transformation 1→ πS∗π

∗
S ensures

that the rectangle at the bottom left corner commutes. The rectangle on the right
commutes since γ∗(V ⊗kOP) = V ⊗kOS is an expression of the base change isomor-
phism for the direct image of L under C → Spec k and the compatibility of base
change maps for a composite of cartesian diagram. The outer rectangle commutes
since it is simply the expansion of (A.2.1). It follows that the hold out ♣ also com-
mutes. From ♣ we get πS∗(γ̃

∗(s) ◦π∗S(θ−1)) = πS∗(α). By (A.1.5) it follows that
γ̃∗(s) = α ◦π∗S(θ). Thus Z(γ̃∗(s)) = Z(α). This means γ̃−1(D) = D as required.

A.3. Proofs of assertions in Subsection A.1. In order to prove (A.1.4) it is
enough to assume S = SpecA and K = G , for the assertion is local on S, and K
is locally trivial. We make these assumptions. For an A-module M , we have to
show that

ϕM : Γ(CA, OCA
)⊗AM −→ Γ(CA, π

∗
SM̃)

is an isomorphism. By [H, Prop. 12.5, p.286]and [H, Prop. 12.10, p.289], it enough
for us to prove ϕk(s) is surjective for every s in S, where, as usual, k(s) is the

residue field of OS,s. Now Γ(CA, π
∗
S k̃(s)) = Γ(Ck(s), OCk(s)

). Moreover, since k

is algebraically closed, and C is proper and inetgral, Γ(C,OC) = k, and there-
fore by the flat base change theorem Γ(Ck(s), OCk(s)

) = k(s). This means that
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ϕk(s) : Γ(CA, OCA
) ⊗A k(s) → k(s) is surjective since it is a map of k(s)-algebras,

and hence is a non-zero map. This proves (A.1.4) and hence (A.1.2).
By (A.1.4) we have an isomorphism of functors of quasi-coherent OS-modules

(πS∗π
∗
SK )⊗OS

(−) −→∼ πS∗(π
∗
SK ⊗OCS

π∗S(−)).

The functor on left is right-exact and the one on the right is left-exact (since πS
is flat, whence π∗S is exact). It follows that both functors are exact. In particular
πS∗π

∗
SK is a flat OS-module, and since it is coherent, it is therefore a vector bundle.

The calculations in the last paragraph in fact shows that it is a line bundle
To prove (A.1.1) it is again enough to assume K = OS . Let s ∈ S. Consider

the composite

k(s) = OS ⊗OS
k(s) −→ πS∗OCS

⊗OS
k(s) ˜−−−−→

(A.1.2)
Γ(Ck(s), OCk(s)

) = k(s).

Once again the composite is a map of k(s)-algebras, and hence it the identity map.
This means OS → πS∗OCS

is surjective by Nakayama’s Lemma. It follows that it
is an isomorphism, being a surjective map between line bundles. This establishes
(A.1.1).

As for (A.1.3), once again we may assume S = SpecA and K = OS . We may
also assume, without loss of generality, that T = SpecA′ for an A-algebra A′. Pick
a finite affine open cover U = {Uα}, with Uα = SpecBα (say) for each index α. Let
U ′ be the pull-back of this cover to CT = CA′ . If for each index α, B′α = Bα⊗AA′
and U ′α := SpecB′α then U ′ = {U ′α}. Let D•A (resp. D•A′) be the Cech complex
of OCS

(resp.˙ OCT
) with respect to U (resp. U ′). Then D•A′ = D•A ⊗A A′. We

have a natural map A → D0
A = ⊕αBα given by the algebra map A → Bα for

each index α. Similarly we have a map A′ → D0
A′ . In fact, as can be readily

checked, these maps take values in Z0(D•A) and Z0(D•A′), the modules of 0-cocycles
of D•A and D•A′ respectively. But the modules of 0-cocyles can be identified with
Γ(CS , OCS

) and Γ(CT , OCT
) repsectively, and the resulting maps A→ Γ(CS , OCS

)
and A′ → Γ(CT , OCT

) are the global sections of OS → πS∗OCS
and OT → πT ∗OCT

respectively. Since the base change map Hi(CS , OCS
)⊗AA′ → Hi(CT , OCT

) can be
identified with the natural map Hj(D•A)⊗AA′ → Hj(D•⊗AA′), the commutativity
of (A.1.3) follows from the fact that the ring homomorphism A′ → B′α is induced
by the ring homomorphism A → Bα, i.e., the former is the latter tensored over A
with A′.

Remark A.3.1. What we have essentially proved is that if f : X → Y is a proper
flat map of noetherian schemes such that the fibres of f are geometrically integral,
then K −→∼ f∗f

∗K for every line bundle K on Y , the map being the natural one.
Moreover, the isomorphisms (A.1.2) and (A.1.4) continue to hold in this situation,
and the isomorphism K −→∼ f∗f

∗K is universal in the sense that diagram (A.1.3)
commutes (with f , Y . . . replacing πS , S . . . ). No essential changes are needed in
the proof we gave above. This is the essential content of [EGA-III, Chapitre 2,
7.8.6]

A.4. General comments I. The techniques used in this note can be used in a
far more general situation. Suppose π : X → S is a flat projective map whose fibres
are geometrically reduced and irreducible, L a relatively very ample line bundle on
X such that if V = π∗L , then the natural map ϕG : V ⊗OS

G → π∗(L ⊗OX
π∗G )

is an isomorphism for all quasi-coherent OS-modules G . Note that Remark A.3.1
applies to π : X → S under these hypotheses. More can be said, namely:
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• V is a vector-bundle for the right exact functor (π∗V ) ⊗ OS(−) of quasi-
coherent OS-modules is actually exact, being isomorphic to the left exact
functor π∗(L ⊗OX

π∗(−)).
• X is a closed S-subscheme of P∗ := P(V ) and L is canonically isomorphic

to the restriction of OP∗(1) to X.
• P := P(V ∨), the space of line sub-bundles of V , parameterises all effective

(Cartier) divisors D on X which are flat over S, and whose associated line
bundle O(D) is isomorphic to L .

In greater detail, if for an S-scheme T , XT := X ×S T , πT : XT → T is the base
change of π, LT the pull-back of L to XT , VT the pull-back of V to T , then the
natural map VT → πT ∗LT is an isomorphism (we will regard it as an equality).
The line bundle LP ⊗OP π

∗
POP(−1) has a natural section s arising as the adjoint to

the tautological injection OP(−1)
σ−→ VP. Then the effective divisorD := Z(s) is flat

over P and if T is an S-scheme such that there is an effective divisor D in XT such
that O(D) ∼= LT ⊗OXT

π∗TM for some line bundle M on T , then there is a unique

S-map γ : T → P such that (1 × γ)∗D = D . In such a case there is a canonical
isomorphism γ∗OP(1) −→∼ M .

The proofs are more or less the same the ones we gave in the special case we
considered in this note.

A.5. General Comments II. One can actually get more out of this technique
than what we have outlined. It is an essential technique in Grothendieck’s proof
(based on an earlier technique of Matsusaka) of the existence of the relative Picard
scheme PicX/S for X → S as in the previous section. Here are some paint strokes
made with a very broad brush.

Suppose Φ ∈ Q[t] is a polynomial. Let π : X → S be as in the previous section
with S noetherian and connected. Let A be a relative very ample line bundle for
X → S, i.e., π∗A is a vector bundle and the natural S-map X → P(π∗A ) (given by
π∗π∗A � A ) is an embedding3. Standard theorems, not very difficult to prove, tell
us that the Hilbert polynomial Ψ(n) = χ(Xk(s) A n

k(s)) does not depend upon s ∈ S
[Mu, Cor. 3, p.52]. In fact, the proof is there on [H, p.262] also, where unfortunately,
in the statement of Thm. 9.9, an integral hypothesis is made. However the proof
given for (i)⇒ (ii) in loc.cit. (i.e., the “only if” part of the theorem) works without
the integral hypothesis, and since it is barely a paragraph, the reader can check for
herself/himself.

It turns out that one can find an integer m such that if K is an algebraically
closed field and SpecK → S a map (i.e., a “geometric point” of S), and L a line
bundle on XK with Hilbert polynomial (with respect to AK) equal to Φ, then L
is m-regular. The integer m depends only on Φ and Ψ, and not on S or X, A , or
π. See Exercise 9.6.7 on p.295 of Kleiman’s article in [FGA-ICTP]. Note that the
very clever solution to the exercise on p.310 of loc.cit. has a small typo. On the
fourth line from the bottom of that page, one should have N = L(−a2) and not
N = L(−a).

Suppose D is an effective divisor. Since divisor for us means Cartier divisor, the
ideal sheaf I of D is invertible. We denote it OX(−D) or simply O(−D). Note that
this is consistent with the general notation.

3Often called strongly very ample for X → S
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For an S-scheme T if F is a coherent OXT
-module flat over T , we say say Fhas

Hilbert polynomial P if F has Hilbert polynomial P on each fibre of πT with respect
to A restricted to that fibre. If T is connected then F has a Hilbert polynomial
by [Mu, Cor. 3, p.52].

Let m be as above. To avoid annoying trivialities, let us assume the relative
dimension of π : X → S is at least 1 so that all fibres are positive dimensional. Let
Φm be the polynomial Φm(t) = Φ(t + m). Via the theory of Quot schemes, the
discussion above (the one referencing [FGA-ICTP, Exrercise 9.6.7, p.295]) says that
the family of line bundles L on X with Hilbert polynomial Φ is bounded whence
the family of line bundles with Hilbert polynomial Φm. It follows that if M is a
line bundle on X such that M−1 has Hilbert polynomial Φm, then the possibilities
for the Hilbert polynomial of M are finite in number. Let Div = DivmΦ be the
open subscheme of the relative Hilbert scheme HilbX/S parameterising effective
divisors D on X which are flat over S and such that O(D) has Hilbert polynomial
Φm. Let D be the universal effective divisor on XDiv. DivmΦ is quasi-projective
over S since OD (regarded as a sheaf which is flat over Div) has only a finite
number of possibilities for its Hilbert polynomial. For simplicity we will assume
that Φm(0) ≥ 2 something that can be achieved by replacing m by m + 1 for
example. This means D is not a trivial divisor.

Let L = O(D), V = πDiv∗L , and P := P(V ∨). Let p : P→ Div be the natural
map. Now, on XP we have a divisor D∗ which is flat over P given by the natural
section of LP ⊗ π∗PO(1). This gives a natural map q : P→ Div such that the pull-
back of D is D∗. Note that p 6= q unless X = S, for p = q implies the following chain
of equalities LP = (1×p)∗L = (1×q)∗L = (1×q)∗O(D) = O(D∗) = LP⊗π∗PO(1).
This implies, π∗PO(1) ∼= OXP , and on applying πP∗ we get OP(1) = OP which is
absurd unless P = Div, whence V = ODiv, i.e., D is trivial, a contradiction.

Suppose Z is an S-scheme and f : Z → Div an S-map. Suppose we have an
effective divisor D on XZ , flat over Z, and a line bundle M such that

(1× f)∗L ⊗ π∗ZM ∼= O(D).

The universal property of (P, D) (whose proof we have given in the special case of
a curve C, but whose proof applies mutatis mutandis here) says that giving a pair
(D , M ) satisfying the above condition is equivalent to giving a map θ : Z → P such
that (1× θ)−1(D∗) = D and p ◦ θ = f .

Now suppose we have a pair of maps f, g : Z ⇒ Div such that on XZ we have
(1× f)∗L ⊗ π∗ZM ∼= (1× g)∗L , i.e.,

OZ((1× g)−1D) ∼= (1× f)∗L ⊗ π∗ZM

where M is a line bundle on Z. Then we get a unique S-map θ : Z → P such that
f = p ◦ θ and g = q ◦ θ and M ∼= θ∗O(1). In greater detail, θ is the unique map such
that p ◦ θ = f and (1× θ)−1D∗ = (1× g)−1D. The equality g = q ◦ θ follows from
the chain of equalities (1 × g)−1D) = (1 × θ)−1D∗ = (1 × θ) ◦ (1 × q)−1(D), the
universal property of Hilbert schemes, and the fact that D is the universal divisor
on XDiv.

Here is a re-interpretation of the discussion above (with certain caveats having
to do with sheafications with respect to the fppf topology on S). If we consider the

relative Picard functor PicX/S = PicΦ
X/S parameterising line bundles on S wirh

Hilbert polynomial Φ, then to say that (1×f)∗L ⊗π∗ZM ∼= (1×g)∗L for some line
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bundle M on Z is essentially equivalent4 to saying that the maps f, g : Z ⇒ Div
fit into a commutative diagram of functors

Z
g //

f

��

Div

��
Div // PicX/S

where the map Div → PicX/S (occurring twice in the diagram) is the one arising
from the line bundle L on XDiv. The fact that such a diagram results in a unique
map θ such that p ◦ θ = f and q ◦ θ = g means that P = Div ×PicX/S

Div and p
and q are the natural projections of this fibre product.

P

�

q //

p

��

Div

��
Div // PicX/S

This means that P is a scheme theoretic equivalence relation on Div, which is flat
projective and surjective. Unpackaged, we are saying p and q are flat (in fact
they are smooth), projective, surjective, and for each S-scheme T , the scheme map
P→ Div×SDiv yields an inclusion P(T ) ↪→ (Div×SDiv)(T ) = Div(T )×Div(T )
which is an equivalent relation on Div(T ). For notational convenience, when we
think of P as a scheme-theoretic equivalence relation, we write R for it. From what
we have said, essentially PicX/S = Div/R. Since R is flat and projective, and Div
is quasi-projective, a theorem of Grothendieck says that Div/R exists as a scheme.
Thus PicX/S is representable. This in a nutshell is the Grothendieck-Matsusaka
method for constructing the relative Picard scheme under the hypotheses we have
given. Details involve descent, fppf and étale topologies, sheafifications in these
topologies, Hilbert schemes . . . .
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