Characteristic polypomida of homogeneous equations
This is an attempt to unify the treatments of solutions of homogaveons liven ODEs with constant wefficientas and of homogeneous lineor recurnane relations with constant coefficients.

The abstract theory: Let k be a field and $S \subset k[x]$ a subset which is multiplicatively closed. We ore mainly interested in
(a) $S=$ nonzero polynomials (for the DE care)
(b) $S=$ polynomials with non-zero countont term (for the recurnance relations case).
Let V be a k-vector space and

$$
T: V \longrightarrow V
$$

a linear operator such that

$$
\operatorname{ker}(p(T))=\operatorname{deg}(p(T))
$$

for all nonzero polynomials p in S.
Examples

1. Let $D=\frac{d}{d t}$ be the usual differentiation operator on differentiable functions on R. Supp re $p(x)=c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n-1} x+c_{n}$ is a polynomial of degree n over $\mathbb{C}\left(\operatorname{deg} p=n \Leftrightarrow c_{0} \neq 0\right)$, and suppose $g: \mathbb{R} \rightarrow \mathbb{C}$ is a solution of $P(D) f=0$. Then

$$
D^{n} g=-\left(c_{1} D^{n-1} g+c_{2} D^{n-2} g+\ldots+c_{n-1} D_{g}+c_{n} g\right)
$$

and hence it is clean tat $D^{n+1} g$ makes sense. In fact, a little thought shows that $D^{n+k} \mathrm{~g}$ makes sense. Thus g is infinitely differentiable.

In view of the above observation, let V be the \mathbb{C}-venter space of infinitely differentiable functions $f: \mathbb{R} \longrightarrow \mathbb{C}$. Let $p(x)=\sum_{i=1}^{n} c_{i} x^{n-i} e \mathbb{C}[x]$ be as above, with $c_{0} \neq 0$. If is well-knowon that given $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$, there exists a unique solutions of the linear homogeneous

$$
p(D) f=0
$$

satisfying the initial conditions.

$$
f(0)=a_{0},(D f)(0)=a_{1}, \ldots,\left(D D^{n-1} f\right)(0)=a_{n-1},
$$

and that these solutions depend linearly upon $\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$.
Thu e

$$
\operatorname{din}_{\mathbb{c}} \operatorname{ker}(p(D))=\operatorname{deg} p .
$$

Thus with V as above, $T=D$, and S the ret of non-jeno polynomials, we are in the situation we one comidering. Panank: We have implicitly assumed p above is non-zero by talking about into degree.
2. Let V be the \mathbb{C} vector space of maps

$$
f: N_{0} \longrightarrow \mathbb{C}
$$

where $N_{0}=\{0,1,2, \ldots\}$, and

$$
A: V \longrightarrow V
$$

the advancement operator given by

$$
(A f)(n)=f(n+1), \quad f \in V, n \in N_{0} .
$$

a liven homagoncoons recurrence relation with crustont wefferients $c_{0}, c_{1}, \ldots, c_{d} \in \mathbb{C}$, with $c_{0} \neq 0, c_{d} \neq 0$ is an equation of the form

$$
c_{0} a_{n+d}+c_{1} a_{n+d-1}+\ldots+c_{d-1} a_{n+1}+c_{d} a_{n}=0, n \in \mathbb{R}_{0} .
$$

This can obviously be re-woilten as

$$
p(A) f=0
$$

where $p(x)=c_{0} x^{d}+c_{1} x^{d-1}+\ldots+c_{d-1} x+c_{d} \in \mathbb{C}[x]$, and $f \in V$, where complex sequencer $\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots\right)$ are identified with maps $f: \mathbb{N}_{0} \longrightarrow \mathbb{C}$ in the obvious way. None, demy, given $\left(\alpha_{0}, \ldots, \alpha_{d-1}\right) \in \mathbb{C}^{d}$, there is unique solution to the equation $\sum_{i=0}^{\infty} c_{i} a_{n+d i}=0, n \in N_{0}$, satisfying the intial conditions $a_{0}=\alpha_{0}, a_{1}=\alpha_{1}, \ldots, a_{d-1}=\alpha_{d-1}$. Monomer, the rs solution e obviondy depend linearly on $\left(\alpha_{0}, \ldots, \alpha_{d-1}\right) \in \mathbb{C}^{d}$. In other words,

$$
\operatorname{din}_{k}(\operatorname{kec} p(A))=\operatorname{deg} p .
$$

If we set S equal to the subset of $\mathbb{C}[x]$ consisting of polynonivals with non-zero constant terms, and $T=A$, we find owreclue in the situation we are comidering.

We now state and prove own main result.
Theorem: Let $\Phi, \psi \in S$ be sit. ged $(\Phi, \Psi)=1$. Then

$$
\operatorname{ken}((\Phi \psi)(T))=\operatorname{ken}(\Phi(T)) \oplus \operatorname{ken}(\Phi(T)) .
$$

Prof:
Let $\omega_{1}=\operatorname{ken}(\Phi(T)), \quad \omega_{2}=\operatorname{kn}(\varphi(T))$ and $W=\operatorname{ken}(\Phi \varphi(T))$.
Then $w_{i} \subset w, i=1,2$, whence $w_{1}+w_{2} \subset w$. We cain that

$$
w_{1}+w_{2}=w_{1} \oplus w_{2} .
$$

Since $\operatorname{ged}(\Phi, \psi)=1$, there exist $p, q \in k[t]$ sit.

$$
p \Phi+q \psi=1 .
$$

Let $w \in \omega_{1} \cap \omega_{2}$. Then

$$
\begin{aligned}
w & =(p(T) \Phi(T)+q(T) \varphi(\tau)) w \\
& =p(T) \Phi(T) w+q(T) \varphi(T) w \\
& =0 .
\end{aligned}
$$

Thus $\omega_{1} \cap \omega_{2}=0$, proving the claim.
The theorems follows from the obsenation that

$$
\begin{aligned}
\operatorname{dim}_{k}\left(w_{1} \oplus w_{2}\right) & =\operatorname{dim}_{k}\left(w_{1}\right)+\operatorname{dim}_{k}\left(w_{2}\right) \\
& =\operatorname{deg}(\Phi)+\operatorname{deg}(\varphi) \\
& =\operatorname{deg}(\Phi \psi) \\
& =\operatorname{dim}_{k}(w)
\end{aligned}
$$

since $\left.w_{1} \oplus w_{2} l=w_{1}+w_{2}\right)$ is a sulspree of w, we get

$$
\omega=\omega_{1} \oplus \omega_{2}
$$

as sequined.

The following two corollaries are useful.

Condlary 1: Let $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ be a collection of pairwise co-prime polynomials in S. Let $\Psi_{k}=\Psi_{1} \Psi_{2} \ldots \Psi_{k}$. Then

$$
\operatorname{ken}(\psi(T))=\bigoplus_{i=1}^{k} \operatorname{ten}\left(\psi_{i}(T)\right) .
$$

Prof:
This is straightforward. We only need to dosene that if $k \geqslant 2$, then $\psi_{1} \ldots \psi_{k-1}$ and ψ_{k} are coperime, and them apply induction.

Cordlary 2: Let $\psi_{1}, \ldots, \psi_{k}$ and ψ be as in Corollary 1. For each $i \in\{1, \ldots, k\}$, let $\left(g_{i j} \mid 1 \leqslant j \leqslant \operatorname{deg}\left(\Psi_{i}\right)\right)$ be a basis of $\operatorname{ken}\left(\psi_{i}(T)\right)$. Then $\left(g_{i j} \mid 1 \leqslant j \leqslant \operatorname{deg}\left(\psi_{i}\right), 1 \leqslant i \leqslant k\right)$ is a basis of $\operatorname{ken}(\varphi(T))$.

Poof:
Obvious (from Corollary 1)!
Solutions of $(D-\lambda)^{n} f=0$
As above, let $D=\frac{d}{d t}$ be the differentiation operator.
Theorem: Let $\lambda \in \mathbb{C}, n \in \mathbb{N}, j \in\{0,1, \ldots, n-1\}$, and $g: \mathbb{R} \rightarrow \mathbb{C}$ the map

$$
g(t)=t^{j} e^{\lambda t}, t \in \mathbb{R} .
$$

Then g is a solution of the $D E$

$$
(D-\lambda)^{n} f=0 .
$$

Proof:
It is dearly enough to prove that

$$
\begin{equation*}
(D-\lambda)^{n}\left(t^{n-1} e^{\lambda t}\right)=0 \quad, n \in \mathbb{N} . \tag{*}
\end{equation*}
$$

We prove (x) by induction on n. The care $n=1$ is eany and standard.
Suppose that for some $m \in \mathbb{N}$ we have

$$
(D-\lambda)^{m}\left(t^{m-1} e^{\lambda t}\right)=0 .
$$

Then

$$
\begin{aligned}
& (D-\lambda)^{m+1}\left(t^{m} e^{\lambda t}\right)=\sum_{p=0}^{m+1}\binom{m+1}{p}(-\lambda)^{m+1-p} D^{p}\left(t^{m} e^{\lambda t}\right) \\
& =\binom{m+1}{0}(-\lambda)^{m+1} t^{m} e^{\lambda t} \\
& +\sum_{p=1}^{m+1}\binom{m+1}{p}(-\lambda)^{m+1-p}\left\{\begin{array}{l}
D^{0}(t) \cdot D^{p}\left(t^{m-1} \varepsilon^{t}\right) \\
+\binom{p}{1} D(t) D^{p-1}\left(t^{m-1} e^{d t}\right)
\end{array}\right\} \\
& \text { (Leibnitz rule) } \\
& =t \sum_{p=0}^{m+1}\binom{m+1}{p}(-\lambda)^{m+1-p} D^{p}\left(t^{m-1} e^{\lambda t}\right) \\
& +\sum_{p=1}^{m+1}\binom{m+1}{p}\binom{p}{1}(-\lambda)^{m-(p-1)} D^{p-1}\left(t^{m-1} e^{\lambda t}\right) \\
& =t(D-\lambda)^{m+1}\left(t^{m-1} e^{\lambda t}\right)+(m+1) \sum_{p=1}^{m+1}\binom{m}{p-1}(-\lambda)^{m-(p-1)} D^{p-1}\left(t^{m-1} e^{\lambda t}\right) \\
& =0+(m+1) \sum_{k=0}^{m}\binom{m}{k}(-\lambda)^{m-k} D^{k}\left(t^{m-1} e^{\lambda t}\right) \text { (induction hypotheiso) } \\
& =(m+1)(D-\lambda)^{m}\left(t^{m-1} e^{\lambda t}\right) \\
& =0 \text {. } \\
& \text { (Iudution hypothesis) }
\end{aligned}
$$

Remark 1: We have wet the identity

$$
\binom{m+1}{p} \cdot p=(m+1)\binom{m}{p-1} .
$$

The algebraic proof is obvious. The combinatorial prof is as fallows. Pick a team of p plages from $m+1$ playgun and then pick a captain four the p players. There ane $\binom{m+1}{p} \cdot p$ wane of doing this. On the other hand, one could pict the captain first and the remaining p-1 plays later. There are
$(m+1)\binom{m}{p-1}$ ways of doing this.
Remark 2: since $e^{\lambda t}, t e^{\lambda t}, \ldots, t^{n-1} e^{\lambda t}$ are linearly independent (indeed $\sum_{i=1}^{n} c_{i} t^{i-1} e^{\lambda t}=0 \quad \forall t \in \mathbb{R} \Rightarrow \sum_{i=1}^{n} c_{i} t^{i-1}=0 \quad \forall t \in \mathbb{R} \Rightarrow c_{i}=0 \quad \forall i$), and since $\operatorname{dim}_{C}\left(\operatorname{ten}(D-\lambda)^{n}\right)=n$, therefore they form a basis for $\operatorname{ke}(D-\lambda)^{n}$.

Solutions of $(A-\lambda)^{n} f=0$
Let $V=\left\{f \mid f: N_{0} \longrightarrow \mathbb{C}\right\}$ and let $A: V \rightarrow V$ be the nounal advancement operator, lie. $(A f)(n)=f(n+1)$ for $f \in V, n \in \mathbb{N}_{0}$.

Theorem: Let $\lambda \in \mathbb{C},\{0\}, m \in \mathbb{N}, j \in\{0,1, \ldots, m-1\}$, and $g: N_{0} \rightarrow \mathbb{C}$ the map

$$
g(n)=n^{j} \lambda^{n}, \quad n \in \mathbb{N}_{0} .
$$

Then g is a solution of the recurrence relation

$$
(A-\lambda)^{m} f=0 .
$$

Note: The constant term of $(x-d)^{m}$ is λ^{m} which is nou-zero.
Proof:
If $j=0$, then $(A-\lambda) g=0$. Indeed since e $g(n)=d^{n}$ in this
care, $\quad(A-\lambda) g(n)=A g(n)-\lambda g(n)=g(n+1)-\lambda g(n)=\lambda^{n+1}-\lambda^{n+1}=0$ This means $(A-\lambda)^{m} g=0$.
Let us assume $1 \leqslant j \leqslant m-1$. Let $n \in \mathbb{N}_{0}$. We have

$$
\begin{aligned}
(A-\lambda)^{m} g(n) & =\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} a^{k} A^{m-k} g(n) \\
& =\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} a^{k} g(n+m-k) \\
& =\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} a^{k}(n+m-k)^{j} \lambda^{n+m-k} \\
& =\lambda^{n+m} \sum_{k=0}^{m}\binom{m}{k}(-1)^{k} a^{k}(n+m-k)^{j} \\
& =\lambda^{n+m}|x|
\end{aligned}
$$

where X is the set of maps

$$
\varphi:\{1,2, \ldots, j\}^{\top} \longrightarrow\{1,2, \ldots, m+n\}
$$

such that the image of φ contains the set $\{1,2, \ldots, m\}$. Since $1 \leqslant j \leqslant m-1, X$ is dearly empty, whence $|x|=0$.

Thus.

$$
(A-\lambda)^{m} g=0 .
$$

Remark 3: The equality $|X|=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k}(m+n-k)^{j}$ can be seen wing the inclusion-axclusion principle. Another way to show that $\sum_{k=0}^{m}\binom{m}{k}(-1)^{k}(m+n-k)$ is zero is to comider the power series expansion of

$$
\theta(x)=\left(e^{x}-1\right)^{m} e^{n x} .
$$

It is clem (since x "divides" $e^{x}-1$ in the poorer series ring over \mathbb{R}) that tho coefficient of $x \dot{j}$ is zero. On the other hand, this coefficient is $\frac{1}{j!} \sum_{k=0}^{m}\binom{m}{k}(-1)^{k}(m+n-k) j$.
Remark 4: Io $j=\{1, \ldots, m\}$, let $g_{j} \in V$ be given by

$$
g_{j}(n)=n^{j-1} \lambda^{n}, \quad n \in \mathbb{N}_{0} .
$$

We have seen that $g_{1} \ldots, g_{j} \in \mathrm{ke}\left((A-d)^{m}\right)$. Moreona, they are linearly independent, for if $c_{1}, \ldots, c_{m} \in \mathbb{C}$ are st.

$$
c_{1} g_{1}+\ldots+c_{m} g_{m}=0
$$

then

$$
\left(c_{1}+c_{2} n+\ldots+c_{m} n^{m-1}\right) d^{n}=0 \quad, n \in \mathbb{N}_{0},
$$

ie.

$$
c_{1}+c_{2} n+\ldots+c_{m} n^{m-1}=0 \quad, \quad n \in \mathbb{N}_{0} .
$$

This means that $c_{1}=c_{2}=\ldots=c_{m}=0$, proving that g_{1}, \ldots, g_{m} are livery independent. Since

$$
\operatorname{dim}_{C}\left(\operatorname{tn}(A-\lambda)^{m}\right)=\operatorname{deg}(x-a)^{m}=m
$$

this means that g_{1}, \ldots, g_{m} is a basis for $\operatorname{ken}(A-\lambda)^{m}$.
Condlary 2, together with Remarks 2 and 4 above give us
the following results.
Theovern:
(a) Let $d_{1}, \ldots, \lambda_{k}$ be distinct complex numbers, m_{1}, \ldots, m_{k} positive integers and W the complex vector spare of solutions to the homogeneous linear ODE

$$
\left(D-\lambda_{1}\right)^{m_{1}} \cdots\left(D-\lambda_{k}\right)^{m_{k}} f=0 .
$$

Then the functions $g_{i j}, 1 \leq j \leq m_{i}, 1 \leq i \leq k$ given by

$$
g_{i j}(t)=t^{j-1} e^{\lambda_{i} t} \quad, t \in \mathbb{R}
$$

form a basis for W.
(b) Let $\lambda_{1}, \ldots, \lambda_{k}$ be distinct nou-zer couples numbers, m_{1}, \ldots, m_{k} positive integers and W the complex vector. spence of solutions of the homogeneous linear recurrence relation

$$
\left(A-\lambda_{1}\right)^{m_{1}}\left(A-\lambda_{2}\right)^{m_{2}} \cdots\left(A-\lambda_{k}\right)^{m_{k}} f=0 .
$$

Then the functions $g_{i j}: N_{0} \longrightarrow \mathbb{C}, 1 \leqslant j \leqslant M_{i}, 1 \leqslant i \leqslant k$, given by

$$
g_{j_{j}}(n)=n^{j-1} \lambda_{i}^{n} \quad, n \in N_{0}
$$

form a basis for W.

